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INTRODUCTION.

The fundamental task in signal processing is to take inputs composed of

both wanted ("signal) and unwanted data (noise, interference), and to produce

an output consisting only of an accurate replica of the signal, uncorrupted

by artefacts of the input noise and interference. To achieve this implies

knowledge of some characteristic which may be used to disciminate the signal

from unwanted data; the nature of this characteristic will determine the

most effective means of rejecting unwanted data without suppressing the signal

- the optimal processor for that specific situation.

In many applications, however, the information about the environment

in which the processor is to work is incomplete. The objective then becomes

to produce a processor which will give an adequate performance over a range

of possible environments, while not being too sub-optimum in the most likely

ones. (An example of such a processor is the Chebyshev shading scheme in

sum—square beamforming, which provides guaranteed rejection of signals from

an off—beam direction to a pre-set degree, at the expense of the gain against

uncorrelated noise). where the number of degrees of freedom (independent

data inputs) is large and the range of permitted environments is small, we

can provide preselected near—optimal processors; the concept of adaptive

processing arises when the system is small and the range of environments

large, so the optimal processor for one permitted environment is grossly

sub-optimum for another, and vice versa. The adaptive procedure consists

essentially of using an initially chosen processor to discover further

information about the environment, and from this determine a more nearly

optimal processor with which to discover further information, and hence

iteratively converge to the optimal processor for the specific environment

being operated in.

The current paper is prompted by the observation that adaptive schemes

originated in the field of geophysics, and have exclusively followed the

direction dictated by that origin, in that the initial processor to which adaptive

variation is applied has been of the sum-square form. In the passive sonar case,

at least, other starting points could be chosen, in particular the cross-

correlation schemes which have been implemented as "multiplicative" processing.

To justify this comment, the paper begins by a diversion into Detection Theory,

and shows that although the sum-square processor may be optimal for a hypothesis

which is appropriate (as an idealisation) to active sonar as well as geophysical

time series, an alternative hypothesis is more valid for passive sonar, and this

leads to the result that a multiplicative processor is more nearly optimal in

_the passive sonar case.

A brief "physical" discussion of multiplisative processing follows

(derived largely from Horton (ref. 1) and Risness (ref. 2) ), in which the

relationship between multiplicative and sum-square beamforming is explored,

in particular, the concept of the "intra-class correlator" as an optimal

generalised multiplicative processor is introduced, and it is shown that this

beecmes a simple split-array multiplier in the limit of a small array, and

approaches the sum-square beamformer for a large array. We then consider the

procedure by which the sum-square beamformer is generalised into an adaptive

scheme, and show that attempts to follow the same prescription for a split—array

multiplier fail.
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However, an analogous adaptive procedure can be defined for the intra-
class correlator. The form of this is established, and it is shown that
it is closely related to the sum—square adaptive scheme, but with different
constraints. The effect of these changed constraints is discussed, and it
is demonstrated that they have the property of automatically and "uniformly"
providing robustness in the response for cases where sensor error or misalign-
ment leads to signal suppression in the "classical" adaptive scheme - and
thus, at least for large arrays, include in a single constraint the protective
mechanisms which Hudson (ref.3) and Owsley (ref.4) provide on a more ad hoc

basis by subsidiary constraints.

LIKELIHOOD RATIO AND PASSIVE SONAR.

The textbook definition of an optimal processor rests on the following
piece of basic probability theory. Suppose we have a hypothesis H, and
a series of observations xi (i=1, 2 .. N), which provide evidence on the
truth or falseness of the hypothesis; a priori, the probability that the
hypothesis is true is p(0;'1‘) . Then, from Bayes' Theorem

P(1;T) = P(0:.T). P(Xi:.(1=1,2 N): ’1‘)

p(xi, (1=1,2 . .. NH
*1

and similarly l — p (1;'1‘) = {l - p(0,'I‘)) p(x1; F)

p(x1)

which,as l — p(n;'I‘) is, by definition, p(n;F) , gives

= u IPram) g (0,’I‘) . L(x1) 2
p (O:F)

where thi), the LIKELIEOOD RATIO, is defined as

L(xi) = p(x1;T) v '3

p(xi;P)

The likelihood ratio is therefore a measure of the increase in confidence in
the hypothesis which may be engendered by the set of observations made;

a processor which extracts the likelihood ratio for this set of observations
and hypothesis is therefore optimal, and any processor which provides a

function which can be transformed into the likelihood ratio by a set of monotonic

(1,1) operations is equally optimal.

To clarify the concept, we will takethe standard example (c.f. Horton

(ref 1) and many others) of the detection of signal in noise, given two

observations, as this is the basis of the choice of the sum-square scheme
as the optimal processor for energy detection. The hypothesis to be tested
is: HYPOI'HESIS 1.

given that the two observations v are each subject to random noise which is
. 1"2’2
Gaussianin form and of mean power VN and that this noise is totally uncorrelated
between the two observations;

2
that a signal (which is also Gaussian and of mean power Vs ) is either present

and completely correlated between the two observations, or is totally absent;

then that the signal is present when the observations v ,v2 are made.
Considering the denominator of L (x1) from equation *3 we see that as, if the

hypothesis is false, v1 and v2 are completely independent and in each case taken
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from the ensemble of Gaussian samples with power VN , then

2—1 2 2
p(v1, v2:F) - p(v1;F) p(v2;F) = (ZWVN) Exp - (v1 + V2,

__T..___

ZVN

*4

To evaluate the numerator, we let the instantaneous signal contribution be u;

- u) in channels 1,2 respectively.-then there must be Gaussian noise (vl — u), (v
2

As this is exactly the situation considered above, we can say that this particular

distribution of Gaussian noise occurs with probability p(v1- u,v2-u;F); the

probability of the particular distribution of Gaussian noise occurs with

probability p(v1

u is itself normally distributed with standard deviation VS, so that

j: p(vl—u,v2 - u; F). p(u) du

 

p(v1.v27 T) = 2 2 2

_ -1 -5 2 2 2

‘ ‘ (ZVVN) (VN + 2‘75) EXP[ (‘Vl +- v2 ) + vs “’1 + v2) *5
2 '2 (W‘r____—Y

2v 2V VN + 2V )
V 2 N 2 IN 5

so that Ltv . v > = N V5“ (“1 + v2 ) *6‘
l 2 2. 2 5 :xp -——5 (-1r-——-1)

(VN + 2Vs 2VN VN + ZVS

It is clear that this can be generalised to n observations, and the form

is obvious by inpsection. In fact 2 n v 2

v v (21% i)
L(v i = 1 2...n) = «ZN—— 5"" 5 ———r

i, ' (v +'n v2)” 2v '2 (v2 + nV)
N S N N s

h 2 ‘7

Log L(vi) = A + a (2 vi)
bl

where A, B are functions of the input signal/noise ratio of the observations

only.

The value of equation *7 is that it shows explicityly that ( vi)2 may

be obtained from L(vi) by the set of (1,1) monotonic transforms (takes logs;

subtract A; divide by B), and that therefore:

The sum-square processor is optimal for testing hypothesis 1, even when

generalised to n observations, and independently of the input signal—to-noise

ratio of the raw observations.

Before extrapolating from this statement to the conclusion that the sum-

square processor is also a valid optimal processor for all, or even most,

detection situations, however, it is necessary to examine in more detail

the relevance of the model in the hypothesis.

The point to which attention should be drawn is that Hypothesis 1

envisages a situation in which a noise field is already established, and

then the wanted signal is switched on, without disturbing the noise field.

This is a valid model for many applications (it is clearly correct if the

noise against.which the signal has to be detected originates in the actual

processor, or for the case when weak transients are to be detected — both

characteristic of the analysis of seismic records; it is also valid for

modelling the detection of echoes in clutter in both radar and active sonar)

but its relevance to passive sonar is questionable - provided that one is
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   not limited by "system noise".

In passive sonars, the sensors receive an input of known power, which

consists either of random noise of that power, or of random noise of some

lesser power, together with a correlated signal contribution. However,
even if a signal is present, its correlation W111 only be apparent if the

array is steered so that the signal lies in the beam of the receiver.
Accordingly, it is suggested that an alternative hypothesis, formulated below,

is more appropriate to passive sonar detection than the signal on/signal off
criterion of Hypothesis 1.

HYPOTHESIS 2 ("signal on—beam/signal off—beamfl

given that the two observations vl.v are each subject to random noise which
2 —\x

is Gaussian in form and of mean power V" and that this noise is

totally uncorrelated betweenme two observations; -

that a signa1(which is also Gaussain and of mean'power V: ,)is always

present and is either totally correlated between the two observations (signal
on—beam) or completely uncorrelated between the two observations (signal off-

beam) ;

then that the signal is on-beam when the two observations are made.

For the case when the hypothesis is true, equation *5 again holds, as the

situation is then identical with that under hypothesis 1.. 'Do calculate

p(v1,v ;E‘) for hypothesis 2, we note that in these circumstances the two

observations are entirely independent, and that each is composed of the

sum of two independent Gaussian processes - i.e. is itself a Gaussian process

 

with variance the sum of the 'two component variances. 2

2 2 -1 "("1 + “2’ *9
Hence p(v ,v. 75‘) = p(v ;F) .p(v :F) = [ZHW + V')] exp -———-—2

l 2 1 2 N s 2
- 2(V + V )

2 2 2 N 2 S 2
v + 2v — v *

and SO L(V1,V2) = 42—5—2 ,5 EX‘P[ ig'2—.2 1 27—“? “’1 + v2)} 9

vaNe zrs) ZVNWN +Vs) VN + 2Vs

and thence to ,
_ . , _ 2 - '

Log L(vl) — A + B 2 v1 vj :fl‘eivi ) . lo

. 1+3
where e is the signal—to—noise ratio 22- .

v .
N

_ Thus again in this case we‘can perform the series of (1,1) monotonic

transformations (take logs; subtract A'x divide by B' ) to obtain an optimal

processor from L(v ). In this case its precise form than depends on the

signal—to—noise ratio, but at least conceptually, we can go one stage further

and remove the v 2 terms by subtraction (as these are again positive definite

and hence this transformation is also monotonic), to derive theresult

A processor which forms all the cross—product terms between pairs of

observations and sums the result, is an optimal processor for testing

hypothesis 2, generalised to n observations.

such a processor, which we callan "intra—class correlator", is not as
generally well—known as is the sum—square processor, so we continue by a

discussion in "physical" terms of some of its properties. and of those of

a related sub—optimal but more easily implementable system, the split—array
multiplicative processor, which has been used in some sonar applications.
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MULTIPLICATIVE PROCESSING

In Figure la we illustrate, for a four element array, the operations

needed for a straightforward implementation of the intra-class correlator

defined above; Figure lb demonstrates the relative simplicity of the

sum-square scheme for the same array. This relative complexity of

the intra-class correlator, which increases as the array size rises,

leads to the query whether or not a simpler related system exists, which

retains near-optimal properties under Hypothesis 2. If, from equation

*10, one takes the view that many of the optimal properties are associated

with the absence of terms of the form v 2, then one is led to the split-

array multiplier, which is illustrated in Figure 1c; here, the array is

split into two halves, for each of which the sensor outputs are summed,

and these two sums are multiplied together. only a selection of the

element cross-products is thereby formed, and so this is not a true

optimal processor; however, its simplicity of implementation may

compensate for this in several practical situations.

Symbolically, the operations illustrated in Figure l, for an array

of 2N sensors, may be written as:

sumesquare may be written as:
2N

Sum-square beamformer ( v1)Z

i=1

u . N 2N
Split array multiplier vi 2 vj

i=1 j=N+l '11

2N 2N

Intra-class correlator 2 v1 vj (i+ j)

i=1 j=1

Figure 2 shows the response of each of these to a sinusoidal plane wave

input, as a function of angle, in the special case of a four-element line

array with sensors 5—wavelength apart; Figure 3 repeats the same information

but with the sensitivities normalised to be equal in the on—beam direction

for the three cases. '

Certain features are immediately apparent from these figures, among

them: -

(3) whereas the response of the sum—square processor is positive for all

directions of the input, the other two systems give negative outputs

'at certain angles, in particular those flanking the main beam direction.

(b) the multiplicative processor has the narrowest, and the sum-square

processor the broadest, main beam;

(c) the positive side—lobes of the multiplicatiVe and intra—class correlator

processors are smaller, in both absolute and relative terms, than those

of the sum-square system: '

(d) the first negative-going side lobes of the multiplicative and the

intra-class correlation processors are larger in magnitude than the first

(positive) side lobe of the sum-square system;

(e) all the negative—going side-lobes of the intra-class correlator have

equal peak amplitude.

We note that the first three of these make the simple split-array multiplier

a very attractive scheme for sonar implementation, if the processor is

followed by a rectifier befOre any display stage is reached.
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All the above features can be readily explained in "physical" terms if

we return to equations ‘11 and expand the processors into elemental sub—

systems, from which they are built up by linear superposition. ’No types

of fundamental processor emerge - the auto—multiplier v 2 and the cross—

multiI-plier Vivi.

directional discrimination - responding equally sensitively to on-beam signals,
off-beam interferences, and "noise"(as it involves only one sensor, it cannot

take advantage of the lack of correlation between sensors by these latter

inputs to reject them) . Thus these self-product terms, which appear only

in the sum—square processor, have the effect of a constant positive bias

on the angular output.

Of these the first has the property that it has no

The directional properties of these processors therefore derive exclusively

from the cross—product terms viv . For an array with the spacing between

adjacent elements set at lz-wavelength, the response is given by

v v = cos (m1? sin 6) , where m. = j-i I *12
i 3

Figure 4 explicityly demonstratesvthe narrowing of the main beam and the

intrusion of repeat 'lcbes into real angles as element separation increases

by plotting the angles at which equation ‘12 has particular values, as a

Emotion of m.

Armed with this data, we are in a position to explain the observed

features quoted in earlier paragraphs, as follows: ’ '

(a) from equation I'll, the sum—square system must give a positive output

as it produces the square of a real number; this implies that at some angles

(where its output is zero), the net effect of the cross-product terms is

strictly negative, andit is balanced by the non-directional positive bias

provided by the self-product ter. The other systems, lacking this bias,

will accordingly give negative outputs in directions where the sum-square

processor has a zero or small positive output, in particular at the flanks

of the main beam.

(b) equation ’11 for the intra-class correlator can be rewritten in the

form

£1 E 2N + _ 2N 2 22“ 2
' v v (i ') E v - v '13

i=1 j=l 1 j E1 1) i=1 ‘ 1

i.e. the intra—class correlate: consists precisely of the sum-square beam-

former with all the self-product .terms removed. - Thus in going from sum-square

to intra-class correlator, we remove theomnidirectional component; this must

make directional changes more rapid in relative terms, and in particular

narrow the main beam. Similarly, toachieve the split-.arr'ay multiplier,

we then remove the further terms corresponding to "within sub-array" cross-

products, 2(N—m) of them for each separation m, up' to m=N; these are all

small separation, so will further narrow the main beam.

For those who prefer a symbolic proof, ’we offer the inequality, true for

all positive a, x and y<x a + x > y_ , and identify a as the terms to

a + x x ‘
be removed at each stage, x the on-axis contribution from the terms which

are retained, and y'the response from these same terms at the angle under

consideration.

(C) and (6), then follow immediately from the same inequality, where in this case
a is specifically the constant self-product term reponse, x is the on-axis

response of the directional terms, and y the response of these same terms

'at the angle under consideration. In the case of (d) , note also that the
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inequality is valid for y negative.

(e) follows from the form of the intra-class correlator shown in equation'

*13 - a sum-square beamformer with the (non-directional) self—product terms

removed. Hence the peaks of the negative lobes in the intra-class correlator

coincide with the minima of the sum—square beamformeroutput, which are

zeroes as the latter is a squaring system. Accordingly the maximum amplitude

of negative response in the intra-class correlator is equal in magnitude

(thOugh opposeite in sign) to the summed self-product terms of all the array

elements.

Two further points arise from this identification of the relationship

between the sum-square beamformer and the intra-class correlator. First,

as the advantage of the latter.must derive solely from the absence of self—

product terms, the suggestion that the split-array multiplier might be close

to optimal because of its exclusion of self-product terms acquires some

validity. Second, in the limit of a large array, the number of self—product

terms becomes negligible in comparison with the cross—product terms, so that

the sum-square system approaches the optimum. Noting that a two-element

intra-class correlator is identical with a two element split-array multiplier,

we see therefore that the optimal processor for Hypothesis 2 transforms smoothly

from being a split—array multiplier for small arrays to becoming a sum—square

beamformer for large arrays. ’

ADAPTIVE SUPPRESSION OF CORRELATED' INTERFERENCE

So far, the discussion in this paper has been exclusively concerned

with OPTIMAL processing, for two carefully stated hypothesis.~ In each,

deliherately, we have totally excluded the factor which limits performance

in many real situations — the presence of interferences which provide unwanted

correlated inputs to the information channels. We now address the question

of how to suppress these interferences without removing the wanted signal,

and for the moment will concentrate on sum-square processing schemes.

For arrays with a large number of degrees of freedom, the solution is

a preselected weighting scheme (i.e. maintaining the sum—square form, but

giving different emphasis to individual relements before forming the sun

which provides a guaranteed rejection of correlated interferences while

retaining the sensitivity to wanted signals, at the cost of slightly

sub-optimum performance against noise and a reduction of the ability

to resolve signals within the main beam. Representative of such schemes

is the Dolph-Chebyshev shading; a useful_rule of thumb for this is that the

vperformance against noise starts to be significantly degraded if side lobe

levels more than 20 log (n-l) on down are to be guaranteed for an n element array.

Thus, for a small array, this trade-off is less than satisfactory and

we are led to the requirement for a more sophisticated, adaptive system.

However, the philosophy remains the same. We start with the equal weight

scheme which is optimal against noise, and vary the weights while maintaining

the form of the processor. The motivation for the variation is to reduce

the influence of the correlated interference on the output, while we impose

the constraint.that the response of the varied system to the wanted signal

shall be the same as that of the inital optimal processor.

This is particularly simple for a processor of sum-square form, as the

response to each independent input, be it noise, interference, or signal,

is positive. Therefore, we achieve the desired result by minimising the

beamformer output by varying e1ement.weights, subject to the restriction

that the response to a unit signal from the look direction remains constant.

If we take, for simplicity, the special case where the beam axis is normal}

to the array, this process may be represented symbolically as:
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2 .
_ minimise wi v1) subject wi)2 = K (Le. Z w = K' ) :14

i 1 I -

(all Hi)

and this minimised output represents the optimum estimate of the lock—direct-

ion input which can be obtained using a sum-square system, in this particular
noise and interference environment.

As we have indicated that a sum-square system is not necessarily the
optimum starting point in the passive sonar case, we now askwhether an
analogous procedure can be defined, to give enhancement for either the
split—array multiplier, or the intra—ciass correlator, by adaptive choice of
sensor weightings. An immediate problem arises in deciding, irrespective
'of constraints, what is the analogue of minimising the sum—square output,

for a correlating processor. As distinct from the situation modelled by

*14, the correlator output is not a positive definite quantity, so that

strict minimisation means maximising the output amplitude, though with a

negative sign; far from suppressing the effect of coherent off-beam inter-

. ferences, this has the effect of enhancing them. minimising the modulus

of the correlator output is equally not a valid solution - it drives the

output to zero irrespective of the existence or not of an on-beam signal,

and this zero value can always beattained as it does not represent an
extreme value for the system.

Thus weconclude, slipping back into the language of detection theory, -

that if the concept of adaptive enhancement of multiplicative processors

along the lines of *14 is to be retained. then the minimisation must be

performed on some positive definite functionwhich is related to the final

system output by a (1,1) monotonic transform. For a split-array system, '

this requirement has no obvious means of fulfilment; the only positive
definitcfunctions immediately available are the sum-square outputs of

the half arrays and/or the full, undivided array, and these do not lead to

the multiplier output by a straightforward monotonic transform. ._In physical

terms, this can be seen if we examine briefly the initially plausible ideas

which could be put forward, viz:

(a) minimise full array sum-square output, then form split—array cross products;
this is a completely fallacious approach, as it is possible to set up situations

in which the half-arrays have large but opposed responses to correlated

interference, whereupon the sum-square array will have the influence of the

interference removed, but the multiplier derived from it by this scheme will

have the influence enhanced. ’

(b) minimise independently the half-array sum-square outputs, then form the

multiplicative output of these two arrays; although, with appropriate constraints,

this will givean extreme value which is in some sense an optimum, this

procedure cannot give as good a result as the original full array sum-square,

as the minimisation of each half-array output against the same background

effectively halves the number of degrees of freedom which may be used.

. It would therefore appear that an impasse has been reached, and the
split-array multiplier is not suitable for adaptive enhancement; to some

extent, this should not be regarded as too surprising a conclusion. as it

is not. in the unadapted case, an optimal processor. However, the intra-class

correlator is an optimal processor, and, moreover, one which is very closely

related to the sum-square beamformer, as evidenced by equation '13. Starting
from ‘13, recognising that (v V )2 is positive, and keeping the requirement
that the adapted system retains the same sensitivity to the wanted signal

-. as the unadapted system from which it derives, we immediately find, as the
analogue for ‘14 in the case of the intra-class. correlator, the adaptive

process:
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minimise ( wi vi) 2 subject to Z Z (wi wj) = c

(all wi) L ' ‘1 J

*15
i.e(f wb'z = c +(iZ wbz Form as output(iZWiVj)2 ‘Zéflivif

DISCUSSION OF THE PROPOSED ADAPTIVE SYSTEM *15.

By a somewhat tortuous route, we have now achieved a proposed adaptive
system which is very closely related to that commonly adopted, but which we
claim to be optimum for a hypothesis which is more nearly matched to the
passive sonar situation than is the classical energy detection on which the
sum-square schemeis based. The question may fairly be asked, what benefits
will this more complicated procedure provide? To answer this, we begin by
considering the limit of a large array ( for which, admittedly, the case
for adaptive rather than preselected processing schemes is weakest, but where
in addition, the optimal intra—class correlator and sum—square beamformer
tend to the same limit in the unadapted-case).

If, in the limit as N tends to infinity, the w remain relatively well—
behaved (i.e. generally of the same order of magnitude and the same sign),
then as there are N(N-l) cross—product_terms and only N terms of the form

w12- in the constraint, these latter may be-neglected and the constraint reduces
A 2

to the limiting form(e§ wi) = C, identical with that of *14; equally, the

correction in going from the minimised sum-square value to the final output
can be neglected, and so we are left with effectively an adaptive sum-square
beamformer in the precise terms of *14. This is to be expected, given the
close relationship between the two unadapted schemes; the perhaps unexpected
new information is the identification of the situations in which the two
schemes may notconverge to the same limit — the cases when the individual
w are large in magnitude andof alternating sign, so that in *15
i

2 2 2
Z 2 Z1 vi >> C, is. 1 wi. is comparable with i 1W1 ).

or equivalently in *14 wi > Kc for some individual wi.

But these situations have already been identified'as cases in which the
"classical" adaptive beamformer defined by *14 is in difficulties, and is
prone to signal suppression (see, e.g. Hudson (ref. 3)). In physical terms
they correspond to,;among other things, large correlated inputs from sources
close to, but distinct from, the beam axis, 05equivalently slight sensor
misalighment or error so that the wanted signal appears to come from an off-
axis direction. In any of these cases the scheme described by '14 "goes
superdirective" with weights of large magnitude relative to the total array
sensitivity, whose values changerapidly and non-uniformly in response to
small changes in the estimated environment - thus leading to slow convergence,
hunting and stability problems. To counter this, and provide a processor
which is robust to such problems, Hudson supplements *14 with an inequality
norm constraint on the wi, derived on an ad hoc basis, of the form

2
Wi s-M‘ foreach i.

Returning to 1'15, we see that it may beinterpreted as including a
constraint of a similar nature, in that as the magnitude of the w 3 increases

so does the "sensitivity" in the sense of *14, against which the sum-square
output is to be minimised. In particular, whereas the constraint in *14
allows the relative sensitivity to noise to rise as the weights grow in

amplitude, the constraint in '15 increases the absolute sensitivity, and

3,3   



 

 

this, taken in conjunction with the minimisation requirement, acts as a limit

to the degree of superdirectivity which can beattained. Additionally, the

supplementary constraints which have been suggested for '14 make an artificial
distinction between interference and noise, as they preset the maximum sensitivity

of noise which can be tolerated, independent of signal/noise and interference/

noise ratios; the total constraint in *15 automatically takes into account
these ratios in determining its optimal form, and does not require any absolute
limit to noise sensitivity, as the noise component is subtracted out to produce

the final processor output.

An alternative further insight into the differing effects of the two

processors of '14 and '15 is obtained by considering how, physically, they
react when confronted by an input comprising: the wanted signal, noise of

comparable power, anda very much stronger interference arising from an adjacent
direction. This interference initially dominates the situation, and the
adaptation attempts to reduce its influence to zero - i.es to make the

toteleffect of the cross-product terms negative to balance the positive

bias from self-product terms. In the case where the interference is within

the main beam, this can.only be done by giving some elements negative weights,

'hence increasing the mean modulus of the weights, and accordingly the effect

of the self—product terms,.which are sensitive to the noise input also.

he, in addition, giving negative weights reduces the positive contribution of
the cross-product terms for the on-beam signal contribution (while in compensation

increasing the self—product effect), we see that the overall mechanism of

minimisation is to reduce the relative influence of the cross-product (i.e.
directionally discriminating) components to the sum—square output.'

This means that.the effect of the noise must beenhanced, relative to

the interference-free situation; as, in '14, the constraint requires the

total response to "noise from signal direction" (i.e. the non-directional
terms) plus correlated signal to be constant, this implies that although

the output may be a good estimte, in terms of energy level, of the signal

input, its_structure is dominated by the enhanced noise response, and the

relative importance of the correlated signal structure is degraded. In
contrast, in '15, although the effect of noise on the minimised function

is egually enhanced, it is then identically removed from the final output;
here the limiting factor lies in the effect of the constraint, demanding

constant sensitivity to correlation on—axis, in forcing very rapidly varying

directional properties if the_interference is to be nulled out. This then

means large w with consequently the increase in noise contribution to the

sum-square function to be minimised preventing complete elimination of
nearby correlated interference. That is, the system contains its own,
built-in, procedure for preventing the effective beamwidth becoming too narrow.

Further, beyond this new, adapted, beamwidth limit, consider what happens.

The minimisation goes to completion with the total contribution from the

interference zeror we then subtract the self-product terms, and in the absence

of any look-direction signal to give a positive output, the final correlator

output is negative. That is, the adapted intra-class correlator retains

the characteristics of its unadapted forerunner in providing a-flanking

white-out strip on either side of the narrowed main beam.

All the discussion above has been in the context of a large array, for

which the neglect of the self-product terms in all but pathological cases

might appear reasonable. .However, for a small array, which by virtue of

its limited degrees of freedom more requires adaptive enhancement, the self-

product terms are a significant portion. The effect of the constraint ‘15

is uniform, independent of the number of elements, whereas supplementary

constraints to make '14 robust willhave a progressively more restrictive

effect on the environments forwhich adaptation can be carried out, as the

array size decreases. We therefore conclude that the modified constraint

as

 



  

system described by equation '15 does represent a more general, and more

effective scheme of adaptation for the passive sonar scenario, although

it is conceded that there is a price-to be paid in greater complexity of

the required minimisation algorithms.
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FIGURE 11:. Intra~cla$a Correlatmr Schematic.

 

FIGURE 1b.‘ Ema-square Beamformer Schematic

  

FIGURE 1c. Split-array Multiplier Schematic
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FIGURE 2. Output fsr a four—element array in response to a pure sinusoid,

at half-wavelength element spacing, as a function of angle for the three

processing schemes stated.
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FIGURE 3. Normalised output forthe half-wavelength spacing four-element

arfay, as a function of angla for a. pure sinusoid input, for the three

processing schemes stated.
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FIGURE 4. Positions in angle of nulls, repeat lobes, and negative repeat

lobes as a function of element separation in waveleng+1§ for a fundamental

two-element cross-correlation processor.

 


