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1 . INTRODUCTION

In this paper a brief account is given of the motion of a baffled plate,
immersed in a compressible fluid, and subjected to acoustical or mechanical
forcing of sufficient size that a nonlinear term in the plate's governing
equation cannot be iyiored. We uncouple the mathematical system by allowing
the fluid to be light compared to the plate. and then employ asymptotic
techniques to reduce the problem to the determination of plate modal
amplitudes via a solution of nonlinear differential equations. We study three
particular configurations in this paper: two forced by plane incident acoustic
waves. and one via mechanical vibration of the plate ends. When the incident
waves are of a single frequency, close to a plate natural resonance, the
nonlinear equations give simple fixed point solutions after the transients
have decayed [1]. If (VJ nearly coincident frequency waves irradiate the
plate, then the equations are much morecomplex ((4.11). (4.13)) and give rise
to harmonic, subharmonic, and aperiodic (chaotic) plate deflections. These
features are illustrated in the numerical results presented herein.
The first model we present includes an in-p'lane compressive load which almost
pushes the plate into its first static buckling mode. Vibrations of in-vacuum
buckled plates or columns have been investigated by many authors (e.g. [2, 3.
4]). The usual approach is to truncate the infinite system of modes thereby
reducing the problem to a system of ordinary differential equations of the
forced Duffing type. Any Justification for this truncation, such as the
asymptotic ordering presented here is usually omitted.

'Of particular interest is the result
that the incident energy at the
acoustic frequency is channelled into
the slowly vibrating buckled mode, and
it is this mode which satisfies a
nonlinear Mathieu equation. The case
of mechanical forcing also leads to
this equation. Finally, with
no—compressive load. only one excited .
resonant mode is shown to persist for

long times, and this satisfies an
equation whose solutions are _
illustrated in figures 3 and 4.
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2. THE BOUNMRY VALUE PROM

We now pose the general mathematical problem for investigation and introduce
non-dimensional scalinge to reduce the problem down to its simplest form.
Three different physical cases will be presented for study.
We examine the motion of a thin elastic plate of width 2a, and infinite
length. forced by vibrations perpendicular to the plate axis, and simply

supported by a plane rigid infinite baffle. Oartesian coordinates (£37) are
shown, for this two-dimensional configuration, in figure 1 and a compressible

inviscid fluid occupies the half space above the plate 630) whereas, for
simplicity, we take a vacuum below.

The (dimensional) plate deflection 7 is governed, for reasonably snall
displacements, by the equation

4— 2 _ _.
8v - 8v| — 62v 82v — — —3_+)\-N _dx _ .._=- '0, :0, <, 2.1)ax“ {a -a[ax' Harms? MK ) y M“ (

where B = Eh /i2(l-u2) is the plate bending stiffness, N = W42, E and u the
Young's modulus and Poisson's ratio respectively, h the plate thickness. In the

mes/area of the plate, T is time, and p(§,0) the perturbation pressure
exerted_on the plate by the fluid. The second term on the left hand side is
due to the presence of plate tension; )\ being a measure of the (given)
in-plane compressive load, a parameter we arefree to vary, and the nonlinear
integral is a result of the stretching of the plate under bending
deformations.
The following. non-dimensional variables are taken:

x = I/a. y_= ,7“, t = Elm/m“), v = Wows), (2.2)
where flung/B) is time-scale based on the plate, together with a velocity
potential for the fluid O(x,y.t) which satisfies

1) = -(pB/ma3)\/(B/Na) 3%, (2.3)
with p the fluid ambient density. The non-dimensional fluid propagation speed
C may be related to the original phase speed 3 by c = J(ma2/B)E, the in-plane
load parameter is written as 7i = Xaz/B, and a fluid lgding Bremen: is
introduced as

e = palm,
which is essentially a ratio of the fluid density to the plate density. This
will be taken as small in all that follows.
The boundary value problem may now be written as:

l lv +AV,“ 4» vu — (]_lv:dx)vxx = an: + ct). y = o, Ix[(l, (2.4)
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¢xx + d” = (l/c2)¢tt, all x, y>o. (2.5)
¢y = Vt, 311, y = 0, (2.6)

with edge conditions
- v =v=0, y=o. lx|=1. (2.7)

n .

baffle condition .
v=O y=0, M > 1, (2.8)

and the total acoustic potential is split into a given incident (and

reflected) plane wave forcing term 471 and a scattered i'ield o(x,y,t). Note
that subscripts denote partial derivatives. To fully specify the boundary
value valueproblem we insist that ¢(x.y. t) contains purely outgoing waves at
infinity and further we seek solutions at large times, i.e.' transients have
decayed to zero, when only persistent motions (periodic or aperiodic) remain.
of primary interest in this investigation is the scattered potential 0(x,y,t),
especially when it is not small., In general. it may be seen from (2.4) that
the displacement is of order 5 times the forcing amplitude, and so too,
through (2.6), will be 9i. However. if the plate is forced close to an -
in-vacuo resonantfrequency of the elastic plate, then the displacement and
consequent radiated acoustic field is of the same order as the incident wave.
We will examine the problem in this frequency regime, and we will restrict our
attention primrily to two particular cases.

3. PARTICULAR MPLES

3.1 Buckled Plate.
If the plate oscillates sinusoidally in a vacuum, and vibrations are so small
that the nonlinear term is negligible, the plate displacement can be written
in modal form (satisfying 2.7) '

m > it.) t
v(x,t) = I a sin(mrx)e n + c.c, (3.1)

n=1 n
where an are arbitrary coefficients, c.c. denotes the complex conjugate, and

un _= n'm/{(n11)2 - A}, n = 1,2,3,... . (3.2)

Now, if A z 112 then the first resonance frequency drops to near zero and the
plate deforms into its first static buckled mode. Here we take

A = 1:2 + (:21? (3.3)
‘wherefn is a buckling detuningparameter. Further we will take two incident

plane waves"(syminetric in x for mathematical convenience) together with their
reflected waves. in the forcing term
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101 t

. Di(x,y.t) = e‘lulcosmlxcossl/c)cos(fllysin61/c)e

m2:
4- sdvzcosmzxcost/e)cos(i72ysin02/c)e 4' c.c., (3.4)

where eul, 51:2 are the two incident wave amplitudes (91,»2 = 0(1)), 91,02 are

the incident wave frequencies
nl=up+eav 02=0p+ecr. (3.5)

61.92 are the incident wave angles shown in figure 1 and up is the pth

resonant frequency of (2.10) which we henceforth Just denote by u.

If we canobtain the deflection in the form (2.9) then the scattered field can

be constructed from Green's theorem as
w iut 2

- é-nilunane n Illcos(nvxl)H32)(un[(x-xl) + y2]“/t:)dx1 + c.c., y>0, (3.6)

where H52) is a Bessel function of the third kind. Note that this term (e)

acts as a damping term in (2.4), due to plate energy radiating off to infinity

in the half space above the plate. Therefore, purely for clarity of

exposition, we will simplify the analysis by taking the governing equation to

have the form
1 2 i

v 9- 7w,“ + ekv‘ 9 vn - ([_lvxdx)vxx = eat

2 “ll! inzt

~ die u(u1cos(klx)e 9 u2cas(k2x)e } + e.c. (3.7)

in which it1 = mos(81)/c, k2 = ucos(92)/c and k is a positive constant. This

reduces the b'oundary value problem down to the single unknown v. The full

problem will be tackled in a forthcoming paper [5].

3.2 Single Mode.
We will examine the amplitude of oscillations when the plate is not subjected

to in-plane compression, Le. x = 0, and we willalso take two nearly

coincident waves as the forcing at frequencies close to 1.1. Thus we will

employ (3.7) with the second term on the left hand side omitted, and note that
vt could, in all problems. he a smll damping factor of the plate as well as

due to radiation damping.

3.3 Mechanical Loading.
One interesting problem is that of radiation from the plate when the forcing

is supplied through the plate ends. One could envisage acoustic energy. from

engines etc.. vibrating the pin-Jointed edges in a sinusoidal motion along the

direction of the plate (Le. along y = 0). This would alterthe in~plane

tension slightly so that we may have

A = 112 + decos((t) + e271. (3.8)
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where d,( are the vibration amplitude and angular frequency respectively. We

take Q‘(x,y,t) to be zero in this example.
These three mes will be tackled in the next section by the method of
two-timing, and the problems will be reduced to ordinary differential
equations {or the modal coefficients.

4 . ASYHFI'OTIC SOLUTION

4.1 Buckled Plate
We will now attempt to determine the solution of the simplified model equation
(3.7). As the forcing frequencies (01,92) are close to u we can expect the
plate to vibrate at this frequency 0 but 'with a slow modulation in time. To
account for this slow variation we introduce a slow time variable 1, defined
as

   

          

 

'r = at (4-1)which we treat as a new independent variable, so that

ale: -» 3/8: + 55/57, az/at2 » 62/6t2 + Zeazlatar 4» 362/672. (4.2)
Also. as the plate is compressed so that it is nearly in its first buckled
mode. we can expect some of the incident wave emery to be transferred into
this lowest mode (which oscillates very slowly on the time scale 1-). With
this in mind we propose an expansion for the displacement as

 

   
     
      v = e(vo + evl + ezvz + ...). (4.3)

which. on equating terms of 0(a). giVes to leading order

2 _va 4- v yo"x + you .. 0. (4.4)   
  This has a solution in the modal form of (3.1) if we satisfy the Jointed edge

conditions (2.7), but because of the buckling (HI = 0) we write it as   

     °° iunt
v = h simrx + 2 A sin that e + c.c. . (4.5)0 n=2 n

To simplify the analysis we now make the assumption that all the coefficients
An, n at p, tend to zero for large times as they are not forced by the incident

waves. Strictly we should keep these terms and prove later that this is the
case. Thus we Just take ' '

       
      

 

v0 = bu)st + (imam + X(y)e"“‘)smpvx (41.6)  where A is the coefficient of the pth mode, X is the complex conjugate of A
and both I: and A are assumed to be as yet unknown functions of 7. To solve
for b and A we examine the 0(52) problem of (3.7), namely
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i(ut+o11)

= -kvo‘ - 2vo" + 4iu[v1cos(klx)e +

Munoz-r)
uzcos(k2x)e + c.c.]. (4.7)

If the asymptotic ordering in (4.3) holds for all time then v1 must not

2
hoooc ‘ v lex * vltt

contain growing terms in t. This gives a condition on the right hand side of

(4.7) (the so-called secularity condition) as
in 1' la

-(kA + 2p) + 401: 1 + 52.. 27) = o (4.9)

where the prime denotes d/d'r, fl. {2 are now Just constants related to the

forcing litudes, and the solution is

“’1 i017 “2 mar

A = me + (2‘02 * 1 e . (4.9)

Note that the complementary function of (4.8) decays exponentially with time

and so is removed. This gives us hali‘ of the leading solution to v, but the

buckling amplitude b has not yet been found. To obtain this we look at the

next order in our expanded equation (53), and eliminate the secular terms by

setting

«was 4/ kb' + b" + 1:41:09 + 231$) = o. (4.10)
Substituting (4.8) and its conjugate into this equation, and rearranging.

leads to the nonlinear Mathieu equation:-

:% «v k ‘g + (a1 4» azcos[(al—'02)T])b + w‘ba = O. (4.11)

1'

Here a1 can be altered by adjusting the buckling detuning parameter '1, a2 by

altering the incident wave amplitudes, and (al - 02) is varied as the incident

frequency is altered. Note that the crucial nonlinear term it3 comes from the

integral term in (3.7). Therefore to obtain the deflection v (and scattered

field via (3.6)) we need to determine a numerical solution for (4.11).

4.2 Single Mode.
If the indplane compression is absent, then, with the incident wave of 0(c) as

in -the above example, the displacement ~ V0 is given by (4.6) with b = 0.

Therefore the nonlinearity has not been brought into play and the solution is

particularly simple. However. if we increase the incident wave amplitude to

cu”) (in (3.4)) then we find \
v've!‘(vo+evl + ...). (4.12)

With an expansion or (3.7), using (4.12) and the two-timing derivatives (4.2),

the coefficients of An. n )9 p. are min shown to tend to zero at large time.
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However now the complex function AP = A my be shown to satisfy

M 2—E; + alA + ia2A A + aacostr) = O (4.13)
where. for simplicity, we lave taken fl = {2 in (4.9), 01 = ~02, and 1' has
been rescaled on 01. The coefficients a‘; a2: a3 are now related to the

detuning frequency parameter 0‘ and the damping k; _the resonance number p; and
the forcing amplitude f1 respectively. Thus wehave a good deal of freedom to

choose their numerical values. As will be seen, these values greatly
influence the nature of the deflections.

4.3 Mechanical loading .
If f in (3.8) were taken to be small (i.e. slow vibrations) then we could show
that the leading order displacement v0 Just contained one term, the buckling

node. Substituting this into the 0(e2) term in the expansion of (3.7). and
again eliminating the secular parts, leads to an equation for b which is
identical in form to that written in (4.11). Thus the solution of this
equation contributes to both physical models.

5. DIWSSION OF OiAOTIC AND PERIODIC NLUTIONS

5.1 Buckled Plate
The governing equation for the buckling mode b (4.11) reduces to Duffing‘s
equation if 01 = 02. This equation permits periodic solutions and if

perturbed slightly, Le. a2 = 0, then these periodic solutions remain.

Holever, if 52 is large enough then, as for the well studied forced Duffing's

equation (see e.g. Guckenheimer & Holmes [4]), the unstable and stable
mnifolds of the saddle at the origin in the b, b' plane cross transversely.
This leads to a homoclinic explosion and the onset of chaotic motion. Two
examples for the parameter values a1 = —1.. k = .1, al - 02 = 1., (with b

scaled so that the 1:3 term has coefficient 1) are given if figure 2, the
curves representing the point (b,b') plotted in time. A detailed analysis of
this work will be presented in a forthcoming paper [5]. Note that the onset
of chaos at a2 ~ .3375 is preceeded by periodic orbits of high period as

illustrated in fugure %, and the aperiodic trajectories have been plotted
long after the start of the motion.

5.2 Single Mode
Figures 3 and 4 (except for as) illustrate Poincare plots of the motion, in
which only the points at times t = 2nv, n = integer, are plotted on the
Complex A plane. In figure 3 the coefficients are chosen as 31 = .l, 32 = 2..

and the forcing amplitude as is varied to illustrate the
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very different solutions that can be obtained. For 33 less than .5 the

Poincare plot shows just one point, which obviously corresponds to a periodic
solution of A, with period 21. As the parameter is increased the motion
becomes chaotic, but still shows some order. For instance 3h illustrates that
the trajectory mostly cuts the plane in two distinct regions, thereby giving
an oscillating solution roughly similar to a period two orbit (period 41) (see
also figure do). As the parameter as further increases, the chaos sometimes

dranatically collapses to simple periodic orbits, as illustrated for the 51!
period orbit in figure 3c (and 271’ periodic orbit at a3 = 8.) but returns just

as suddenly.
A more logical (but less physically meaningful) way of examining the onset of
chaos is to vary the damping term a]. Figure 4 demonstrates this for

decreasing damping, and remaining parameter values set at a2 = 3., a3 = 5.

Figure 4a illustrates the whole trajectory when al = .5 starting from (3.,3.)

and clearly indicates the attracting nature of the chaotic motions. Indeed
all trajectories, for all parameter values. are attracted into a finite region
around the origin. The attractor is nearly periodic in 4a, but is folded to
produce wandering motions, with slightly varying periodicity in time and
space. The folding of the attractor is illustrated in the Poincare plot of
4b, and note that if 31 = 6., the attracting orbit becomes a simple limit

cycle. For a damping factor of a1 = .12, the motion, although chaotic,

behaves quite similarly to a period three orbit, but as the damping diminishes
the apparent order becomes less easy to visualize. Asa striking example, for
a1 = .01, figure 4d gives apparantly very random motions lying within a subset

of an elliptical area.

6. (DNCLUSIONS

This paper has illustrated how’ the coupled motions of a fluid loaded elastic
plate may be analysed when the loading parameter s is snail. For certain
incident wave, ormechanical forcings the plate motion may bedescribed to
leading asymptotic order in terms of the amplitudes of particular modes of
vibration. These amplitudes are found by the numerical solution of
differential equations, which describe the slow time variations of the
functions. or primary concern is the sensitivity of the motions to particular
values of the parameters, and this is clearly illustrated in figures 2. 3 and
4. In all examples the chaotic oscillations of the plate result in a
chaotically varying scattered wave amplitude in the fluid. Note that for the
buckling case. these oscillations occur at Very low frequencies, but for the
single mode case the primary resonant mode has a chaotic amplitude. Further
aspects and details of this work will be presented in further publications

[5]-
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