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1. INTRODUCTION

In this erticle we will consider the scattering of incident time-harmonic Rayleigh surface waves
by & compact surface defect in an elastic balf space. In seismological applications, and in the
field of non-destructive testing when the surface imperfection is very small (e.g. in investiga-
tions with scoustic microscopes {Briggs [1]), it is often the case that the elastic waves have
wavelengths much greater than a typical length scale of e defect, @ say. We can therefore define
& dimensionless small parameter

e= ka1, (1)

say, where & is the wavenumber of compressional waves in the body. We will exploit {1} to
solve the plape-strain scattering problem by the method of matched asymptotic expansions.
This involves solving an ‘outer problem’, scaled on the wavelength 2x/k, in the form of an
asymptotic expansion; each term of which is forced by fundamental sources placed in the surface
of the elastic material. These are compressional and shear multipoles (see Briod & Wickham
[2]}. Previous studies employing matched asymptotic expnosions bave mainly been concerned
with the scalar problem for horizontally polarized shear waves, or, when the general elastic wave
equation has been considered, attention has focussed on submerged scatterers or slowly varying
surface deviations {cf. Datta & Sabina [3]).

We will confine our attention in this paper to two types of surface defect. These are the inclined
planar edge crack (figure 1) and the semi-circular ‘bite’ (figure 2). Rescaling on the defect
lenthscale, a, allows us to obtain an asymptotic expansion in the ‘inner region’ for either problem.
Each term in these expansions is posed as a problem in elastostatics which belongs to a small
class admitting explicit solution. The edge crack inner problem is solved by the Wiener-Hop{
technique (Khrapkov [4]) whereas a conformal transformation allows the latter geometry to
be tackled (Green & Zerna [5]). Brief details will be given for the solution in either case,
and the leading order terms obtained, These terms will be shown to ‘match’ with the leading
otder outer potential and by this means we determine the coefficient of the source term of
this potential. Finally we present the reflection and transmission coefficients of the scattered
Rayleigh waves. Full details of the edge-crack problem, solved to the first thiree orders, can be
found in a forthcoming paper by the authors (Abrahams & Wickham [6]).
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2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Figure 1

Defining cartesian coordinates {z, ), where the elastic body accupies the half-space —oo < z <
oo, ¢ > 0 excluding the defect, the elastic displacement vector u satisfies (after removing the
harmonic time dependence factor e—*)

- K~%curl curlu + k~2grad divu + u = 0. @

Here k and K are the wavenumbers of the compressional and shear body waves respectively. On
the free surface, y = 0, of the material the boundary conditions are

ciz(z,0) =0 (3)

where oy;{z,y) is the siress tensor nod throughout we shall identify the z and y directions with

the subscripts 1 and 2 respectively. On the erack or “bite’ surfaces, denoted by 8¢, we also have
no tractions so

ov; =0, rEé8C (4

where v is the outward normal vector on the void boundary and r is the position vector.

We now express u in the form .
u = ul! 4 o, {(5)

where the incident Rayleigh wave is written as

[
el 3N

in which k, is the wavenumber of the Rayleigh wave given by the positive real zero of 1‘

Ric) = (2a® = K*)? ~ 4aPy(a)b(a), n

and
Ae)=(a® -k} | 4(a)=(a? - K}, (8)
Yo =y{ks) b, = b(k,). (9)
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To fully specify the boundary value problem we require that the scattered displacement, ul®),
satisfies a radiation condition at infinity. This can be expressed mathematically by demanding
that the Lamé potentials (¢!, ¢{*), defined es

ul”) = grad(¢'™) + cutl(z p**H) (10)

(z perpendicular to {(z,y) plane}, bebave as
b

N = Yo, iz, e -

$9 = ik,“*"* _1U+A(9)(kr)§+o(kr) h, {11)
o = Uop  titr—s, etKr .1}

v o= g Bae ”*B(”(K,)g"“’”” : (12)

a6 * — co. Note that & refer to = > 0 and z < 0 respectively, r and & are shown in figure 2, and

By (2K =K
Az T g (13)

It is the object of this paper to find the leading arder behaviour of the reflection (A-) and
transmission (A4) coefficients of the scatiered Rayleigh wave. Finally, to ensure unigueness we
insist that the displacement is bounded at the crack or bite edges.

3. OUTER POTENTIAL

Firstly we introduce the stress tensor 85 (r,r') corresponding to an isotropic compressional line
source situated at r’ in an elastic half apace whose surface is supposed traction free. Hence on
y = 0 we know

ER(=0),r) =0. (14)

By application of Green's theorem to the elastic body under investigation, we may show that
ak Tt (r'y = fw ui{r)EL (e, 'y I, (15)

where 8C is the boundary of either imperfection, d! is an infinitessimal increment of arc length
“along this boundary and g is the shear modiilus of the material. A similar expression may be
obtained for the scattered shear wave potential.

We now define inner and cuter coordinates according to
R =(X,Y)=(z/a,y/a), #=(2,§)=(kz,ky) (16)

respectively, and we further express the incident and scattered displacements in the inger region
as
ury="U, [Ut-"(n) + cU(R)] (a7
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respectively. On 8C the distance from the origin, r, is always of order a. Hence we may write
dl = adL and expand the stress tensor in a Taylor series expansion

Tf(aR, ¥ /k) = Tf(0, i-’/k)+:)(;8_ —EL(r,Ffk)+.. (18}
provided that # > e. Therefore, the cuter solution behaves us
i U, i,
s = Lo {shoem [ Ultn)m aL (19)
+ THO,F/R) j' USSR 4L + 55 TH(0,F /k) f U (R, X, dL} +0(é),

where, from Brind & Wickham [2],

(0 )_ _4(" - l} fm 326(") -ut—-](c]yds (20)

etc., and v = K/k. The first integral term in (19} is as yet unknown, and it is this constant which
must be determined from an examination of the inner region. The latter terms are integrals
involving the forcing, and are therefore known from (6). For the edge crack we can easily show
that the forcing integrals are identically zero whereas the first integral may be written as

D.= coaﬁjol Ui(R, 82 dR, . | (21)

where |t denotes the jump across the crack from the left to right face as shown (figure 1).
Similarly for the semi-circular void we know

_ 2Uo PP i 2] _
HNE k) ~ ;:FE {zﬁ(o,r Jk)Dy — g [U._‘. '(O)B—hzzg(u, & /k)

+ U{"(O)%Eﬂ(u, /) + U{"(O)a—%ﬁﬁtﬂ: i"ka]} . (22)

irk?
3k,

By solving the respective inner problems to find Iy we could determine the constants from the
integral identities (21), (23}. It is simpler however to match inner rad outer solutions together
as & — oo and ¥ — 0. We may obtain the form of the outer expansion as ¥ — 0 from (20) and
by referring to [6]. We find

(23)

/2
Dy= -f_', sin 8 Uy(R, 8) b —

# ey n A TeD 00020 (24)

Note that the presence of the free surface strengthens the smgnlanty If the defect was some
distance below the surface then one would obtain log# behaviour close to it.
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4. INNER EDGE CRACK PRGBLEM

The governing equation io the inner region ie obtained by rescaling the dependent and indepen-
dent variables. To leading order we find

- K2curlx curlyu + Kgrady divxu=0 (25}

which is just the elastostatic equation. Here
ol 8U;

divyU = *BT + W (26)

eic. On the crack we know that the stresses, written in inner coordinates, are
ome = —2iu(k/ko)(r? - sinfcosd, 8=8, R<1, 27
oee = =2iu(kfko)(r® - 1)cos®§, 6=8, R<], (28)

and the normel and shear stresses are zero on ¥ = O, We nlso insist that the displacements are
bounded everywhere.

The boundary value problem may be formulated as & matrix Wicaer-Hopf equation which can
be solved exactly. The details may be found in Abrahams & Wickham [6]; bere we simply quote
the solution for the sum of the principal stresses ns & — oo:

® = oxx+oyy~ BTN a0, gy 0002 (29)
i) = (conf.snf)Q(2)Q-(0) ( o ) : (30)
where Q4(a), Q-(o} are the matrix multiplicative factors of
R (na)T+ m(@) (@) 31)
In (31) I is the identity,
n(a) = cosf2(a ~ 1)8] +cos{an) - 2(a — 1) cos® f col2(ar ~ 1)d], (32)
m(a) = 2(a—1)cosFsin[2a - 1)g], (33)
A(a) = n*(a) - m¥*a)(l - (a - 1)?cos? §) (34)
and .
ser= ((_nf,, @ Des). )

Here Q.(a) is non-zero and has no singularities in R(a) > 1, and similarly Q-{a} is non-zero
and has no singularities in ®{n) < 2. Both factors behave like constant matrices at infinity in
their respective half pianes of analyticity.
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5. INNER SEMI-CIRCULAR VOID PROBLEM

To leading order, the inner problem has the governing equation written in (25) but now the
boundary conditions on the curved surface are

—2ip(k/k.)(7% - 1)sinfcosd, —m/2<8<nf2, R=1, (36)
=2ip(kfk,) (7% = 1)sin® @, -n/2<8<n/2, R=1. (37)

TRe
Tho

This problem is most conveniently sclved by working with the Airy stress function x(R) and
employing & conformal transformation. We use the mapping

z=X+i¥= coth(%c) = coth %({ +in) (32)

which transforms any point on the straight boundary ¥ = 0 to a point on the line 5 == 0, whilst
the arc R = t maps to § = =n/2 (Greer & Zerna [5]). Hence the elastic body is mapped into
an infinite strip, a geometry which can then be tackled by Fourier transforms. Again omitting
the details we find that

_iulk/ho)(r? —1) j“’ T(as)e™*
oo (8in

x€) = 2(cosh £ = cas ) b2 (sn/2) — 87) (39)

where

T(s) = sin nsinh sp(1 + s*) tanh(sn/2) + &° coth(en/2)] - s[cas nsinh s5 — #3in 5 cosh #x]. (40)

We can determine the trace of the stress tensor a8 B — oo from this result, which for mathe-
matical convenience we take along the line ¥ = 0 only. Thus

_giplk/ko)(r2 = 1)

8(X,0) ~ -

C2, X -+ %00, (41)

where
coth(sm/2)

W ds =z 2.0850. (42)

= -]
Cz=1+2[ P
i

6. MATCHING AND CONCLUDING REMARKS

In order to determine the two unknown ceofficients D,, Dy from section 3 we must match the
cuter solution as ¥ — 0, {24}, with the inner solutious, (29), (41), as R — oc. To achieve this
we must establish a relationship between the outer compressional potential ¢!*) and the inner
stress invariant ©. We can show that

9=- "’lj‘—"(r’ - 1)¢'”, (43)
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and g0 for the edge crack we find that (replacing 7 by ¢R in'(24))
D, = —i(k/ko)r?cas’ aC1(H). (44)
For the ‘bite’ we match along # = £ /2 which gives
irk?
Dy = —mCz. {45)

Thia completes the leading order solutions and from these values of D we can determine the
scattered Rayleigh wave coefficients. For the semicylindrical groove we find

Aa = 8k360(r* = 1)Dy 5 rirlK?
2T T RIR (k) - T BRI, R (k)

where R’ is the derivative of the Rayleigh determinant written in {7), and for the edge-crack

_8k¥,(r2 - 1D, ,
Az = —m-(k—o)-—e . (47)

{(2k3 - K%)(1 + sga(a)) - K'sgu(z)} ¢, (46)

There are several points to note. Firstly the scattered surface waves are very small, O(¢?), which
is not too surprising in view of the fact that the imperfection is small. Secondly we see that,
to leading order, the reflection and transmission coefficients are identical in the case of the edge
crack, although clearly the geometry is not symmetrical., The angle at which the crack is inclined
1o the vertical affects the magnitude of the coefficients through C1(8), but the asymmetry in
the scattered waves will only appear at next order in the expansions. This i8 in contrast to the
‘bite’ geometry, which gives rise to asymmetrical scattering at leading order. The authors are
currently comparing the wave coefficients calculated for the latter problem with resulte given
recently by Gregory and Austin 7).

Another point to raise regarding the semicirenlar void is that the coefficients Ay are purely

imaginary. The could lead to the obviously false impression, when performing an energy balance,

that the Rayleigh wave propagating to 400 has more energy than the incident wave! This
possible misunderstanding can be cleared by performing matching to next order O(e?) in which
A4 bas & real component. This will then show that the total energy of the right travelling
Rayleigh wave (in z > 0} is smaller than that of the forcing. ‘

The method presented in this paper can easily be employed for s wide range of surface breaking or
near surface imperfections. For traction free defects the outer expansion will be identical 1o those
given in section 3. For inner problems in which the displacements are specified an alternative
form of the potential to that in {15) may be deduced, and, this will lead te a different form for
the outer expansion.
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