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1. INTRODUCTION

In this article we will consider the scattering of incident time-harmonic Rayleigh surface waves

by a compact surface defect in an elastic half space. In seismological applications, and in the

field of non-destructive testing when the surface imperfection is very small (e.g. in investiga-

tions with acoustic microscopes (Briggs [1]), it is often the case that the elastic waves have

wavelengths much greater than a typical length scale of a defect, a say. We can therefore define

a dimensionless small parameter
e = Ito < l, (I)

say, where k is the wavennmber of compressional waves in the body. We will exploit (1) to

solve the plane—strain scattering problem by the method of matched asymptotic expansions.

This involves solving an ‘outer problem', scaled on the wavelength 21r/k, in the form of an

asymptotic expansion; each term of which is forced by fundamental sources placed in the surface

of the elastic material. These are compressional and shear multipoles (see Brind it Wickham

[2]). Previous studies employing matched asymptotic expansions have mainlybeen concerned

with the scalar problem for horizontally polarized shear waves. or, when the general elastic wave

equation has been considered, attention has focussed on submerged scatterers or slowly varying

surface deviations (cf. Dattn & Sabina

We will confine our attention in this paper to two types of surface defect. These are the inclined

planar edge crack (figure 1) and the semi-circular ‘bite’ (figure 2). Rescaling on the defect

lent hscale, a, allows us to obtain an asymptotic expansion in the linner region' for either problem.

Each term in these expansions is posed as a problem in elmtostatica which belongs to a small

class admitting explicit solution. The edge crack inner problem is solved by the Wiener-Hopi

technique (Khrapkov [4]) whereas a conformal transformation allows the latter geometry to

be tackled (Green is Zerna Brief details will be given for the solution in either case.

and the leading order terms obtained. These terms will be shown to ‘mntch' with the leading

order outer potential and by this means we determine the coefficient ofthe source term of

this potential. Finally we present the reflection and transmission coefficients of the scattered

Rayleigh waves. Full details of the edge-crack problem, solved to the first three orders, can be

found in a forthcoming paper by the authors (Abrahams 8c Wickham [6]).
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2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

 

Figure 1 Figure 2

Defining carteaiau coordinates (x, u), where the elastic body occupies the half-space -oo < a <
00, y > 0 excluding the defect, the elastic displacement vector u satisfies (after removing the
harmonic time dependence factor 3"“)

— K'zcurlcurlu + k'zgrud djvu + u = o. (2)

Here I: and K are the wavenumbers of the compressional and shear body woven respectively On
the free surface, 1; = O, of the material the boundary conditions are

0420.0) = 0 (3)

where :5, (2,34) is the stress tensor and throughout We shall identify the z andy directions with
the subscripts l and 2 respectively. On the crack or ‘bite‘ surfaces, denoted by 80, we also have
no tractions so

05,11,- = D, r 6 EC (4)

where v is the outward normal vector on the void boundary and r is the position vector.

We now express u in the form _
u = ul" 4- up), (5)

where the incident Rayleigh wave is written an

I B

in which kn is the waveuuniber of the Rayleigh wuve given by the positive real zero of

13(0) = (‘A’fla - h")2 — 4a’7(u)5(a). (7)

and

~,(a)=(a=-k2)l , 6(a)=(a=-xl)l, (a)
‘79 = 70%) . 60 = We»). (9)
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To fully specify the boundary value problem we require that the scattered displacementI u").
satisfies a radiation condition at infinity. This can he expressed mathematically by demanding
that the Lame’ potentials “PM/1m), defined as '

  

u“) = gradwm) + curl(i W") (10)

(i perpendicular to (1.14) plane), behave as

44') E£A¢e*‘*-=-1-v +A(e) ‘ih + pun-rt, (11)
"‘9 (kt-)9

10b) = .U_’B*etiksx-5av + 3(0) em: +0(Kr)‘i, (12)- ck. (Kr)!

as 1- —~ on. Note that 3: refer to z > 0 and 2 < 0 respectively, 1- and 0 are shown in figure 2, and

at _ ¥(2k: — K“).
K ‘ NJ. (13)

It is the object of this paper to find the leading order behaviour of the reflection (A_) and
transmission (44+) coefficients of the scattered Rayleigh wave. Finally. to ensure uniqueness we
insist that the displacement is bounded at the crack or bite edges.

8. OUTER POTENTIAL

Firstly we introduce the stress tensor 25(r,r') corresponding to an isotropic compressional line
source situated at r’ in an elastic half space whose surface is supposed traction free. Hence on
y = D we know

moms) = o. (14)
By application of Green's theorem to the elastic body under investigation, we may show that

,ur’et'lu') = [W «magma-I,- 41, (15)
where 80 is the boundary of either imperfection; d! is an inflnitesairnal increment of arc length
'nJong this boundary and u is the shear modulus of the material. A similar expression may be
obtained for the scattered shear wave potential.

We now define inner and outer coordinates according to

R=(I‘f.}’) =(z/flw/I). P= (ivi)=(k=,l'v) (15)
respectively, and we further express the incident and scattered displacements in the inner region
8-H

u(r) = 11., [U‘“(R) + cum] (17)
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respectively. On 60 the distance from the originI 1-I is always of order 2:. Hence we may write
d1 = MM and expand the stress tensor in a Taylor series expansion

EfloRj'lk) = name/1.) + .xkénguy/k) + . .. (18)

provided that F’ > e. Therefore, the outer solution behaves as

2_, Un _,Mrm = —;K,k {2mm lk)/;c 010‘)!!de (19)
+ saw/k) j” W'an «M + inane/k) [w Uii)(R)V1Xk a} + 0(6).

where, from Brind 84 Wickhan: [2],

1 4(1-2 — 1 a .250) __- ,
mayo”): _7) mme P" "a. (20)

etc, and r = K/k. The first integral term in (19)is as yet unknown, and it is this constant which
must be determined from an exuninntion of the inner region. The latter terms are integrals
involving the forcing, and are therefore known from For the edge truth We can easily show
that the forcing integrals are identically zero whereas the first integral may be written as

D, = cosBj: 11mm»: am. (’1)
Where It denotes the jump across the crack from the left to right face as shown (figure 1).
Similarly for the semi-circular void we know

 

¢"’(i’/k) ~ ‘i—‘i‘; {£f,(0,i’/I:)D. — g [04"(0)0%25(a.r'/k)

+ Ui"(o)o%2fi(o,r/k) + U{"(o>3’;zi;w.i'/u]} . (22)
where _ _

D. = — -/_ sin a U,(R,o) d0 — ‘mj. (23)

By solving the respective inner problems to find U. we could determine the constants from the
integral identities (21), (23). It is simpler however to match inner and outer solutions together
as R —~ no and 1‘- —o 0. We may obtain the form of the outer expansion as r' - 0 from (20) and
by referring to We find 2

m _ 4r UoDcos28

_ é (ll/k) N film-7 F3 ' .

Note that the presence of the free surface strengthens the singularity. If the defect was some
distanee below the surface then one would obtain log? behaviour close to it.

 

(24)

106 Proc.l.0.A. Vol 13 Pan 2 (1991)

  



  

Proceedings of the Institute of Acoustics

THE SCATTERING BY A SMALL SURFACE IMPERFEC’I‘ION

4. INNER EDGE CRACK PROBLEM

The governing equation in the inner region in obtained by rescaling the dependent nnd indepen-
dent variables. To leading order we find

— churlx enrlxu + k’grsdx divxu = 0 (25)

which is just the elastoatstic equation. Here

. _ 6U) 002
diva— ax + or (26)

etc. On the crack we know that the stresses. written in inner coordinstes, are

m = amt/My? — min/amp. 0 =5, R < 1, (21)
an = -2iu(*/ko)(f’ — 1) coo'p. a = 5. R < 1. (23)

and the normal and shear stresses are zero on Y = 0. We also insist that the displacements are
bounded everywhere.

The boundary vnlue problem many he formulnted as I nun-ix Wiener-Hopi equation which can
be solved exactly. The details may be found in Abraham: & Wickhsm [6]; here we simply quote
the solution for the sum of the principal stresses as R -v on:

. ,-
e = FXX+WY~ Blukgr I)M,Bc1(fi)cos20

 

h”! T, (29)

6.05) = (mfi.ainfl)Q+(2)Q-(0)( 3:5 ) . (30)
where Q,(a), Q_(a) m the matrix multiplicative factors of

'Z(:;(n(a)l+ mama». (an
In (31) I is the identity,

11(0) = eos[2(n — up] + cos(ar) — 2(a — 1)’coe'pm[2(a — 1m]. (32)
m(a) = 2(a — l)cosflsin[2(a — l)fi], (33)

Ma) = fin) — m’mu - (a — 1mm (34)
and

J<«)=(-:::::t) (“:35”). <3»
Here Q+(a) is non-zero and has no singularities in Ma) > I, and similarly Q-(n) is non-zero
and has no singularities in Ma) < 2. Both i'setors hehnve like constant matrices st infinity in
their respective half plnnes of nnnlyticity.
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5. INNER SEMI-CIRCULAR V0115 PROBLEM

To leading order, the inner problem has the governing equation written in (25) but now the
boundary conditions on the curved surface are

on = —2iu(k/k,)(rz - l)sin0cos 9, -1r/2 S 0 S r/2, R =1, (38)

m = —2iy(k/kg)(r2 —1)sin’p, —rr/2 5 9.5 vr/Z. R =1. (37)

This problem is most conveniently solved by working with the Airy atrzsa function x(R) and
employing a conformal transformation. We use the mapping

z = x + W = cothéfi) = coth a; + in) (38)

which transforms any point on the straight boundary Y = 0 to a point on the line :7 = 0, whilst
the are R = 1 maps to 1, = -1r/2 (Green & Zerna |5]). Hence the elastic body is mapped into
an infinite strip, a geometry which can then be tackled by Fourier transforms. Again omitting
the details we find that

I'uUt/kuX‘r2 - 1) °° TU)?“£
X“) = _ 2(cosh é - cos») -ooWT)

du, (39)

where

T(s) = sin qsinh afl[(1 + 32) tnnh(5‘l/2) + :2 coth(arr/2)] - a[cosr] sinh sq - suit: I] cosh :17]. (40)

We can determine the trace of the stress tensor as R - oo from this result, which for mathe-

matical convenience we take along the line Y = 0 only. Thus

e(x,o) ~ —fl‘-‘i/l‘%ll;flc,, x « too. (41)

where
coth(nr/2)_ ’° 3

c“ '1)“ 2/0 ' (swim/2) —.=)
ds :3 2.0850. (42)

ti. MATCHING AND CONCLUDING REMARKS

In order to determine the two unknown ceoficients D“ D; from section 3 we must match the

outer solution as F - 0. (24)I with the inner solutions, (29). (41)I as R —- oo. To achieve this

we must establish a relationship between the outer compressional potential d") and the inner
stress invariant 6. We can show that

e = —M(r’ —1>¢"’. (43)
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and so for the edge crack we findthat (replacing i by all in'(24))

pi = —i(k/I¢.)r‘ca.’pc.(5), (44)

For the ‘hite‘ we match along 9 - irr/Z’ which gives

i‘irK2
Di -— - Zkkn C2. (45)

 

This completes the leading order solutions and from these values of D we can determine the
scattered Rayleigh wave coefficients. For the semicylindrical groove we find

Skid, 2-1D "I"2 ,A: =we“ + {(21% — K’)’(1+ssn(=))— R‘szn(z)} 8. (46)

 

where R‘ is the derivative of the Rayleigh determinant written in (7), and for the edge-crack

_ steam —1)D, ,A, _We . (47)

There are several points to note. Firstly the scattered surface waves are very small, 0(3), which
is not too surprising in view of the fact that the imperfection is small. Secondly we see thatI
to lending order, the reflection and transmission coeflicients are identical in the case of the edge
crack, although clearly the geometry is not symmetrical. The angle at which the crack is inclined ‘
to the Vertical affects the magnitude of the coefiicients through 01(5), but theasymmetry in
the scattered waves will only appear at next order in the expansions. This is in contrast to the
‘bite' geometry, which gives rise to asymmetrical scattering at leading order. The authors are
currently comparing the wave coeficienta calculated for the latter problem with results given
recently by Gregory and Austin

Another point to raise regarding the semicircular void is that the coefficients A: are purely
imaginary. The could lead to the obviously full: impression, when performing an energy balance, '
that the Rayleigh wave propagating to +00 has more energy than the incident wave! This
possible misunderstanding can he cleared by performing matching to next order 0(13) in which
A... has a real component. This will then show that the total energy of the right travelling
Rayleigh wave (in c > 0) is smaller than that of the forcing.

The method presented in this paper can easily be employed for a Wide range ofsurface breaking or
near surface imperfections. For traction free defects the outer expansion will be identical to those
given in section 3, For inner problems in which the displacements are specified an alternative
form of the potential to that in (15) may be deduced, and. this will lead to a difl'erent form for
the outer expansion.

This work was undertaken in port whilst Dr Abrahama was in receipt of a Nufiield Science
Research Fellowship. He is grateful to the Nuffield Foundation for this generous award.   
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