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INTRODUCTION

Under—determined problems commonly arise In many areas of signal processing due
to restrictions on the physical and temporal apertures of practical devices and also
on the number and on the bandwidth of sensors avallable. Within the tolerance or
margin of uncertainty set by the noise floor of practical systems and also by
inevitable inaccuracies in knowledge of the sensor response characteristics there are
generally many valld solutions which ‘fit’ a given batch of received data. Usually just
one of these solutions is required for further processing — most frequently to infer
from It a model of the input scenario. Since the data itself does not indicate
uniquely the correct model 10 choose. at least one additional criterion or preference
must be applled. Various algorithms are now offered to the system designer and
each apply a different constraint. model or assumption (maximum liklihood and
maximum entropy are terms which are commonly used). However the underlying
reasoning leading to the choice of one particular solution is not always obvious to
the user of an algorithm, and consequently may not be related in any way to the
real situation. Conceivably collateral knowledge. which could assist the choice of
mode!, could arise In many different ways: for example research findings or
characterisations of the scenarioc may be avaliable off-line. other equipment may be
gathering related data or there may be circumstantial evidence to be tested. The
merging of data and application of useful predetermined assumptions are of interest
in many areas of current research. For this reason we have set up a computer
simulation which directly compares the performance of a selection of advanced
algorithms and allows us to test basic ideas in this area quickly and easlly.

A POINT MODEL USED AS COLLATERAL KNOWLEDGE

There is a class of algorithms, typified by MUSIC [1], which explicitly depend on a
‘point target mode!’ to describe a batch of data in terms of a few parameters. These
algorithms generally first require the diagonalisation of a covariance matrix, estimated
from incoming data. The orthonormal property of eigenvectors Is used to separate
‘unwanted’ noise components from a signal subspace. If the point description is a
valid assumption in the prevalling circumstances. then the one solution which the
algorithm selects might be expected to be nearer the ‘truth’ than a relatively diffuse
version possibly based on an arbitrary model. We demonstrate later that the MUSIC
class of algorithms generate results which appear to defy the generally accepted
limits of ‘resolution’ as postulated by Rayleigh. yet clearly cannnot violate the bounds
set by Information theory. It Is clear that the real limitation must depend both on the
signal content relative to the noise power in the data but supported by the knowledge
that targets are points. We suggest that the application of a point model lliustrates
that simple forms of collateral knowledge can be applied effectively. It has already
been shown by several workers that the addition of collateral knowledge in the form
of a mathematical constraint or support function does modify resolution limits [8].

ADVANCED ALGORITHMS

The interpretation of incoming data into a point model by advanced algorithms can be
divided Into three distinct stages. The first operation Involves filtering the data in
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some optimum way in order to emphasise the most useful components in the data -
the information content. In the second stage the fliter output is interpreted as being
equally well represented by a few points - each of which Is associated with previously
characterised impulse response waveforms or vectors which are then regarded as
basis components of the data. For example. In spatial processing each wave-
form/vector - often referred to as a steering vector - would correspond to the
response of the sensor system to a ‘point source’ at a certain ‘direction’ of arrival,
in the third stage. If required. we go back to the original data and use the mode|
resulting from the previous stage. The simplest concept of this stage. for a model
comprising n point sources, is that n-1 nulls are steered onto all the ‘directions’
except one In order to extract the signal from that direction. This is analogous to
more conventional adaptive canceilation algorithms but the advantage Iis that the
steering vectors for all the required signal direction are already available. In practice
we directly decompose the data using the steering vectors as basis vectors., a
straightforward mathematical operation requiring a pseudo inverse ([1.6]. The two
latter. stages are common to all algorithms in our simulation, while for the first stage
we have developed a generalised fiiter routine. This fliter can easily be adapted to
implement any one of a number of algorithms.

Assuming a previous diagonalisation of a covarlance estimate and using a column
notation for all vectors, the basic equation for the routine is:

zt AH. U.a". P.UH. 2 )

where: :
z{...) performs an operation on a matrix or vector which we define as:
a) form the magnitude squared of each element and
b) for the case of a matrix average along the rows,
A iIs a matrix containing a complete set of impulse responses or steering
vectors for the sensor system, and should span the whole signal space.
U is a complete orthonormal set of eigenvectors of the covariance
estimate derived from the batch of data,
« is a diagonal matrix containing the corresponding singular values of the
data, (square root of the eigenvalues of the covariance estimate),
P Is a rank deficient identity operator selecting the ‘noise’ (Pp) or ‘signal’
(Pg) vectors respectively from U using relative singular value as a partitioning
criterion.
z Is an operator which selects one coiumn (usually the first) from the
preceeding matrix,
XxH denotes the hermitian transpose of an arbitrary matrix X.
n takes a value 1,0.-1 or -2

In our routine. P, z and « can be replaced independently by Identity matrices in
order to carry out any or all of the following aigorithms:

MUSIC (1] , zi AH. u.P,.UH )
TUFTS & KUMARESAN (2] zt AH U.P,.UH. 2
MAXIMUM LIKELIHOOD(Capon) 131  z( AH.U.a1.uH )
MAXIMUM ENTROPY [4] zt AH U. &2, UH. 2}

In this standardised form the latter two filters generate minima in signal directions by
virtue of ths «~ 1 or o2 weighting against the larger components. For large signals,
the depths of minima depend closely on the inverse of signal amplitude but it is the
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‘directions’ of these minima which are of interest to us. Note that weak signals may
have shallow minima which are subject to noise and masking by the ‘sidelobes’ of
deeper minima.

The first two algorithms also generate minima In signal directions by partitioning
u.uH <an identity matrix) Into two complementary subspaces - the signal partition
and the noise partition [5). It can be assumed that nolse. given a sufficiently long
sample of data, will appear to be uncorrelated (white) sc that in the absense of
signals. the filter response to the complete nolse subspace should be reasonably
flat. We see that the partitioning process not only extracts components corresponding
to the ‘wanted signals’ but also removes signal-like waveforms from the noise.
Projecting the incomplete noise subspace onto matrix A containing ‘all possible
signals’ then shows minima, each corresponding to a ‘hole In the noise’. Ideally
these minima indicate the best matches between vectors in the matrix A and each of
the signal waveforms.

Note that both the MUSIC algorithm and the KUMARESAN and TUFTS variant do not
include a weighting depending on singular value or signal amplitude. The ‘sidelobes’
of large components should not therefore mask small signals. We regard this as a
very significant pointer to the reason for the potentially superior performance of these
algorithms In a realistic scenario where targets may be of unequal amplitude.

Signals, in general. appear to be partially correlated due to both physical and
temporal aperture limitations and cannot be assoclated with specific (orthogonal)
eigenvectors. Consequently signal power may leak into the nolse subspace resuiting
in reduced null depths. This suggests the mechanism which limits the abllity of this
type of algorithm to identify waveforms arising from closely spaced sources or weak
sources.

The generalised equations we give for the four first stage fllters show up other
simlilarities. In particular we see that both the MAXIMUM ENTROPY technique and the
TUFTS and KUMARESAN version each select the first column of a ’‘modified
covarlance matrix’, U.a".P.uUH, Disregarding potentially useful Information by using
only one column appears wasteful but does Improve performance in specific
applications notably the case of a complex exponential kernel [2]. This can be
oxplained by realising that using an end column is equivalent to applying a linear
prediction fllter of maximum window length. This Is known to give the best model in
frequency domain analysis. We see that both the other algorithms utilise all columns
- forming an average with equal weighting. These are appropriate in the general
case where signals are localised In the aperture.

For reference we also include in the results section the performance of a bank of
conventional matched filters. defined simply by AH,  and implemented via our
standard routine. as:

SIMPLE FILTER zt AH U .« UH )

It is of interest to realise that. in order to eliminate the under-determined aspect of
the problem. the collateral knowledge implied by using this filter is that the amplitude
of data extrapolated outside the collecting aperture should be minimised. clearly a
basic assumption which is not valid in most applications. The filter is easy to
implement and is aiso robust but cannot give a good representation of a ’‘point
source’ input scenario. The well known sidelobe masking of weak signals by larger
signals means that a subsequent simple application of a point model (stage two) is
not able to extract detail.
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SIMULATION COMPARISONS

We show exampies of simulation resuits for a relatively complex target scenarios. The
system response matrix, A, for the first case has a (Sin(x)/x) Iimpuise response
covering 8 sample points uniformly spaced at intervals equal to the width of the sinc
(between nulis). This example could represent a focal plane antenna array used for
direction finding or perhaps a sampiled aperture in the time domain used for time
delay estimation -~ any filter with a sinc response. The second example has a
complex exponential (Exp(ix)) Iimpuise response and might be used to model a
spatial direction finding problem based on a linear array of 16 antenna elements.
Alternatively it could equally well represent any system requiring frequency domain
analysis of signals obtained in the time domain. As Indicated for example by
Kumaresan and Tufts [2], and due to the symmetry of Exp(ix), we can discriminate
against noise by reversing data in the x dimension and adding the resulting new
covariance matrix io the original estimate. The information content in both covariance
matrices Is identical but some Integration against noise improves the emphasis
needed in stage one. Whenever appropriate we have utilised this technique. which
can be regarded as implementing both backward and forward linear prediction filters.
Note that, in the examples we give, the matrix A defining the system response is
known exactly by the signal processing algorithm.

Our simulation program is able to process 3D data [6] and we have therefore been
able to use the same targets for both the above examples: the two dimensional
positions are given in the table below. The position units are dimensionless and
correspond {0 the distance between nulls for the sinc case and correspond to the
number of cycles within the aperiure In the Exp(ix) exampie. One unit or cycle is
equivalent the conventional resoiution limit. Amplitudes are given in decibeis relative
to the noise power of a single sensor without integration. The sources are
uncotrelated in a third domain (5 sample points).

Source 1 2 3 4 5 6
Amplitude(dB) 9 5 1s 20 14 5
Sin(x)/x 3.5 2.6 .3 3 -.2 ~-1.9
Exp(ix) 1 1 1 -3 -1.2 -1.2

Figure 1 shows the eigenvalues generated for the sinc domain and demonstrates the
partitioning process. The curve in figure 2a, for the sinc domain, shows a typlcal 1D
filter response for each of the five aigorithms mentioned. The positions of the
minima. from which the ‘directions’ of the point sources must be estimated,
Indicates a clear preference for the MUSIC algorithm followed perhaps by MAXIMUM
LIKELIHOOD. Note that the MUSIC algorithm can be implemented by estimating the
positions of peaks using the complementary signal subspace eigenvectors
(AH.U.PS.UH). These peaks are visually comparatively broad and intervening dips
appear to be very shallow but the resuiting model Is Identical [5). Care should
therefore be taken in assessing performance on the basis of a natural preference for
visual sharpness. The scale for these plots is 20dB per division with an arbitrary
offset. The crosses mark the directions of the simulated sources used to generate
the data. The dB scale refers to the power level of sources relative to unintegrated
gaussian noise added to both in phase and quadrature components at each sample
point. Figure 2b, for the complex exponential kernel, {lustrates the superior
performance in this case. of the KUMARESAN and TUFTS filter in comparison to
MAXIMUM ENTROPY. Application of a point target model (stages two and three) to
both the main dimensions of the input data leads to Figure 3. This 3 dimensional
representation of the model and is obtained by applying the relevant psuedo inverses
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to the respective dimensions of the input data. The vertical lines represent the
ostimated power levels and are the average of the 5 samples in the third dimension
of the data. The positions In the horizontal plane indicate estimated direction
parameters.

DISCUSSION

The impact of the point target model Is clear. The ouput model can be compared
with the simuiated Input scenario and although there are several spurious signals
indicated the model generated appears to be potentially useful. it could in principle
be refined by further processing. The data reduction/compression achieved In the
modelilng process also has potential applications.

in both examples. as expected. an algorithm utlising the subspace/partitioning
approach gives the best performance for the idealised point target scenario used in
the simulation - particularly in respect of weak signais. Although results for only
sample of data are shown, [t can be seen that ‘directions’ are established for
multiple sources. to within a fraction of the width of the relevant impulse responses
without recourse to any form of conventional monopulse or 'split gate' technique. The
level of discrimination achievable not oniy allows the power leveis of sources of
unequal amplitude and close spacing to be estimated but also enables the individual
waveforms of sources in other domains to be analysed.

CONCLUSIONS

We have used a general equation to represent a number of advanced signal
processing methods in order to compare and contrast algorithms and to aid our
understanding of the principles which underpin advanced techniques. We have been
able. by simulation., to demonstrate the superior discrimination potential of the MUSIC
class of algorithms on multi-dimensional data and to illustrate the Importance of
utilising appropriate collateral knowledge in applications where a high level of
discrimination between input vectors is required. The technigue obtains much of its
enhanced performance by utilising efficiently decorrelation between signal sources in
more than one domain. The KUMARESAN and TUFTS version, although appearing to
discard certain information. performs better than MUSIC in some applications, notably
analysis in terms of complex exponentials, where the signal power of each
component is essentially uniformly distributed over all the sample points.
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Figure 2a. Sinc analysis.
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