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1. INTRODUCTION

This paper addresses the problem of combining auditory representations of an acoustic signal,
in a manner which preserves the most important aspects of each individual representation.
The approach is illustrated with data produced by the reduced auditory representation
(RAH) analysis technique [1, 2, 3]. However, it can be geraIised to the combination of any
spectrogram-like representations. A recognition experiment is described which demonstrates
the improvement in noise robustness achieved for an isolated digit database at varying levels
of signal to noise ratio (SNR).

Previously, linear discriminant analysis (LDA) [6] has been used for combining different rep-
resentations of acoustic data. A new method is proposed here, which allows prior knowledge
about the importance of different features to be built into a transformation process, simulta-
neously suppressing pitch information, achieving a, higher level of noise robustness, allowing
for positional shifts of data within the observation vector, and retaining more information
about compact spectral events than is possible with [DA

2. THE RAR REPRESENTATIONS

The RAR is an acoustic signal analysis technique, based on a model of the transformations
that occur in the human peripheral auditory system. It is based on the premise that the
information coded in the auditory nerve cannot be solely represented by the mean neural
firing rate. Other features are assumed to be important: in particular, the temporal infor-
mation present in the phase-locking of the neuron firings. The phase structure of the basilar
membrane displacement, is not apparent from the mean firing rate. The RAR characterises
this phase structure by estimating phase derivatives, both with respect to time and cochlear
position, giving a detailed picture of local synchrony.

The RAR provides four parameters for each point along the basilar membrane: intensity
(related to the signal power in each channel), adaptation factor (a normalised version of
the number of neurons expected to he firing at any point), temporal frequency, and spatial
frequency of the wave as it passes along the membrane. Each parameter is scaled, on a
per-channel basis, based on its expected range of response. All produce spectrogram-like
outputs, with peaks corresponding to regions of high energy. These peaks tend to occur in
all parameters together, but the correlation is not complete, since some parameters are more
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sensitive than others to different aspects of the input signal. All but the intensity parameter
are amplitude-independent, and cover a. fixed range of values.

3. FUZZY SET THEORY

Fuzzy set theory was introduced by Zadeh [8] as means of departing from the hard decision
boundaries of traditional set theory. Fuzzy sets indicate a degree of membership in a set,
rather than a binary membership decision, which can be advantageous where objects are not
distinctly members of one class or another‘ For a set of observation vectors {xhxm . . . ,x...}
a fuzzy c partition specifies the degree of membership of each vector in each of the c classes.
The degree of membership of X], in class i is denoted by on. = mix.) and defined as

meet—9”)“5:1

where d“ is the Euclidean distance, “xi—q", between cluster centrei and data vector k. and
' "F’E [hochepresents the degree of fuzziness (F=1 represents a crispopartition of'the data” ’ a

set). The fuzzy membership function exhibits the useful property of bounded membership
5:, u“. = l, where n.1, 6 [0,1].

4. SELECTING THE DATA SPACE

By appropriate selection of the centres it is possible to characterise the data space fully. In
a fuzzy clustering problem the cluster centres, c.~, are iteratively updated to characterise the
data space efficiently. However, if assumptions can be made about the features which are
important in the perception of speech, the centres can be simply positioned to characterise
those features, without the computational expense associated with clustering algorithms. For
example, if it is reasonable to say that the position of spectral peaks (formant frequencies)
can be considered perceptually important, then it would be sensible to position the centres to
represent combinations of spectral peaks of the different RAE parameters. All combinations
of valleys and peaks in the different parameters must be included amongst the centres so as
to provide an alternative membership for the difierent combinations of parameters. The data
space could thus be described by aset of centres for each auditory channel, positioned at
the corners of a hyper-cube covering the expected range of each parameter. For a particular
spectral event in a particular channel, a large membership function will be associated with
the closest centre, indicating significant evidence for that spectral event.
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Figure 1: Positioning of cluster centres and definition of spatial range. Each auditory channel
is represented by a 2 dimensional auditory observation vector x...

5. POSITIONAL TOLERANCE

It was observed in [2] that the BAR, as with other auditory models, produces representations
whose frequency resolution in the low frequency, low bandwidth channels exceeds that which
can be effectively used by existing speech recognition algorithms. Intra- and inter-speaker
variability can result invastly different representations of the same utterance. To Overcome
this problem spatial integration was applied in an attempt to minimise the variation.

Positioning the centres at discrete spatial steps and then calculating the membership function
for all data points within a defined spatial range, a. level of tolerance to the position of
spectral events can be enforced. The spatial position of the centres, either auditorily or
linearly based, and the spatial range. afiect the way in which the membership functions code
the positional tolerance. There is evidence for an auditorily-motivated scale [4] but in this
experiment a linear scale has been used [2]. Improved results were obtained by extending
the range of the membership function to beyond the required resolution. In this paper twice
the normalised range was used. Figure 1 shows a simplified example of the calculation of
membership functions for a given spatial range, with each channel being represented by a
2-dimensional vector.

6. NOISE FLOOR ADAPTATION

Noise in the acoustic signal will dominate those auditory filterbank channels distant from
the major components of the signal. Due to the non-linear nature of the intensity parameter
this means that the spectral valleys begin to ‘fill in'. This effect can also be seen in the
BAR frequency parameters, although for different reasons. For clean speech, channels will
be influenced by signal components at or below their centre frequency due to the asymmetric
auditory filter passbands. Adding noise will produce a frequency estimate that is related to a
complex combination of the filtered signal and noise, dependent upon the relative amplitude
of each in the filter passband. This generally results in an increase in the frequency estimates
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for the channel. In regions close to the major components of the acoustic signal, diannels
will be dominated by that component, and should therefore remain relatively consistent.
This is true for the SNRs used in this experiment.

The rise in the noise floor can lead to the evidence for spectral valleys being severely weak-
ened, even when they are still obvious in the EAR parameters. It would not be sensible for
the centres describing the data space to remain fixed whilst that data space is changing. To
overcome this problem, the efi'ective floor of the valleys needs to be tracked. For the exv
periments performed here, the tracking is performed in a. very simplistic way by positioning
the centres that form the lower bound of the hyper-cube two standard deviations below the
mean of each parameter (across all channels in a particular time frame). Each parameter
range is thus independent, with the centres positioned to give the ‘best’ characterisation of
each representation.

7. DATA REDUCTION

The information present in the RAE representations is now expressed by a large number of
membership functions for the set of cluster centres. The number of membership functions
associated with. eachecentre is dependent onthe number of channels in the required spa,-
tial range. The membership functions explicitly describe the evidence for combinations of
spectral peaks and valleys in each auditory filter channel and contain position-tolerant in-
formation on those spectral events. However, if this new description is to be of practical use
(e.g. interfaced to a recognition algorithm), the data rate needs to be reduced. Redundancy
can be expected in the information coded into the membership functions as the presence of
evidence for one event will inherently mean the absence of evidence for another event.

For evaluation purposes a simple form of data reduction is used which results in a sin-
gle spectrogram-like representation. The membership functions associated with a partic-
ular centre are averaged to integrate the position-tolerant information spatially. Then,
using the eigenvectorassociated with the largest eigenvalue of the Kuhunen-Loéve trans-
form (KLT) [5], a data-dependent optimal linear combination can be achieved with min-
imal loss of information. Forming the KLT separately for each spatial window, through
eigen—decomposition of the covariance matrix of the averaged membership functions for that
window, a single value is obtained which is an optimal combination of those membership
functions.

The outputs from all the channels are used to form a vector which can be viewed as a
spectrogram. Examining the KLT eigenvalues, the percentage mean square error (MSE)
introduced by eliminating all but the most significant eigenvector is on average, across all
channels, only 12%. A further reduction in data rate can be achieved by applying the KLT
across adjacent channels without significant further ls of information, givrng, on average,
15% MSE.
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Figure 2: RAR representations (top) (spatial frequency, temporal frequency, adaptation
factor and intensity) and combined representation (bottom) for the digit eight, with no
additive noise (left) and SNR of 9dB (right).

8. RECOGNITION EXPERIMENTS

Due to the amplitude-dependency of the intensity parameter and hence the difficulty in pre-
dicting its expected range, it is not included in the fuzzy combination scheme, However, from
experiments conducted in [2] it appears that intensity information can be important in dis-
crimination of speech. Therefore the signal energy is calculated (using the computationally-
efi‘icient energy operator developed by Kaiser [7]), and is appended to the combined fuzzy
membership data.

The three remaining parameters, adaptation factor, temporal frequency and spatial fre-
quency, giving eight cluster centres, are thus combined in the manner described to form a
single representation of the auditory data. Figures 2 and 3 show typical examples of the
original, separate, RAH parameters and the combined version for the utterances “eight” and
“two” respectively. The procedure to generate the single combined representation for each
RAH frame is sumarised below:

1. Calculate the RAE parameters.

Calculate the position of the lower bound centres for each parameter.

Normalise the data space in the Euclidean sense to give all dimensions equal weighting

, Calculate the membership functions for each centre for all data points within the defined
spatial range using

$
.
9
3
.
”

5_ Combine information from adjacent spatial windows using the KLT, created by eigen-
decomposition of the covariance matrix formed from the training set“

6. Append the Kaiser energy.
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Figure 3: RAR representations (top) (spatial frequency, temporal frequency, adaptation fac-
tor and intensity) and combined representation (bottom) for the digit. two, with no additive
noise (left) and SNR of QdB (right).

The recognition experiment described here uses a Whole word, isolated digit, speech database
consisting of five continuous tables, each of 100 digits spoken by a male speaker. Three tables
were used for training and the remaining two formed the test set. Pink noise was added to the
test data at SNRs of 21dB, l5dB, 9dB, 3613, and v3dB, and the experiment repeated. Ten-
state left.»to-right, whole word, multivariate singlelmode Gaussian, hidden Markov models
(HMMs)7 with diagonal covariance matrices, were trained on the noise-free data. Single
state noise models were trained to model non-speech sounds (breaths, lip smacks, etc.)
and the additive background noise. Using diagonal covariance assumes that all channels
are statistically independent. This is not true {or the auditory model data, especially in
adjacent channels where they are likely to be responding to the same signal components.
However, using such an assumption gives a large computational saving for little anticipated
degradation in the recognition rates, while allowing more robust estimation of the model
parameters.

The EAR was set to give .54 channels covering a frequency range from 50Hz to Ski-la, with
a channel spacing approximately equal to 0.5 ERBs. initial experimentation found that a
fuzziness index F = 2 and defining the distance measure d1..- of (1) to be the 4“ power of
Euclidean distance, produced sufficiently robust results while allowing efficient calculation
of the membership functions. Spatially windowing and applying the KLT to the RAE data
gave a. total of 29 channels plus an appended log energy channel. To allow the MB to
generate sulticient frames to represent the detail of the acoustic data, a frame rate of 5m:
was used. The temporal resolution was set to 12.5ms (to suppress pitch modulation) and the
spatial resolution was set to 200Hz (the smallest value appropriate to adult male speech).
The effective spatial range covers twice that resolution.
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Table 1: Comparison of noise robustness of the combined RAR representation with MFCC
processed data for decreasing SNR.

The recognition performance of the auditory pre-processor was compared with that of a
stande 26 channel Incl-scale frequency cepstral coefficient (MFCC) pro-processor with
appended normalised log energy. A 25ms temporal window was used with a frame being
generated every 10ms (no additional information is yielded by this preprocessor even if a
higher frame-rate is used).

Table 1 shows that the combined RAR provide improved representations for the recognition
of isolated digits in noise. The RAB. performance only begins to fall significantly at SNRs
below 9dB, while the MFCC is already severely degraded by this point.

9. DISCUSSION

A novel approach to combining auditory representations has been introduced which gives
significant improvement in recognition performance for noise-corrupted speech, over that of
a traditional MFCC pure-processor. The superior recognition rates obtained using the fuzzy
combination of RAR parameters, can partly be attributed to the noise adaptation used.
However, the combination method can only provide a consistent representation if the initial
representations are robust enough to retain suflicient discriminatory information under noisy
conditions. ’

Most of the errors at moderate SNRs are due to misclassification of the utterance /two/,
which can largely be attributed to the weak vowel, which is poorly represented in the original
RAR representations, see figure 3. The robustness of the combination is surprising consider-
ing the simplicity of the adaptation mechanism which gives only a rough approximation to
the noise floor, and ignores temporal continuity in the position of the lower bound centres.
A better representation could be achieved by using a. noise floor tracking algorithm, and by
allowing modification of the upper bound centres to represent weak formants better.

Little evidence of onset or offset information is present in the combined representation.
This is not unexpected because, by their nature, these features will only be present for a
small fraction of the time and will not be significantly represented in the covariance matrix
used to calculate the KLT. The information could, however, have been extracted from the
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adaptation parameter, if the matrix had been calculated differently. In particular, an LDA
approach could have yielded superior performance if such features were found to be useful in
discrimination. The importance of onset/oEset information in the discrimination of acoustic
data is diflicnlt to quantify, hence the significance of their absence is not known. Calculation
of the covariance matrix after variable fratnerate coding, or use of the adaptation parameter,
which will be sensitive to onsets, as a weighting function when estimating the matrix, could
improve the statistical description of the onsets and hence increase their representation in
the output.

10. ACKNOWLEDGEMENTS

The authors wish to thank the Speech Research Unit, DRA Malvern, for the CASE award
associated with this research and for the use of the digit database.

REFERENCES

l BEET, S. W. : ‘Automatic speech recognition usin a reduced auditory representation8
and position-tolerant discrimination’, Computer Speech and Language, 1990, 4, pp. 17—
33. 7 " ' ' '

[2] BEET, S. W. and GRANSDEN, I. R. : ‘Interfacing an auditory mode] to a parametric
speech recognise!" in ‘Proceedings of the Institute of Acoustics, Speech and Hearing',
1992, vol. 14, pp. 321—328. '

[3] BEET, S. W. and GRANSDEN, I. R. : ‘Time and frequency resolution in the reduced
auditory representation’ in COOKE, M. P. , BEET, S. W. , and CRAWFORD, M. D.
(Eds): ‘Visual Representations of Speech Signals’, 1993, pp. 175-179.

[4] CHlSTOVlCH, L. A. and LUBLINSKAYA, V. V. : ‘The ‘centre of gravity' eifect in
vowel spectra and critical distance between the formants: psycho-acoustical study of the
perception of vowel-like stimuli’ in ‘Hearing Research’, 1979, vol. 1, pp. 185-195.

[5] FUKUNAGA, K. : ‘lntroductiou to statistical pattern recognition’ (Academic Press,
1990).

[6] HUNT, M. J. and LEFEBVRE, C. : ‘Speaker dependent and independent recognition
experiments with an auditory model’ in ‘lCASSP’, 1988, pp. 215-218.

[7] KAISER, J. F. : ‘On a simple algorithm to calculate ‘energy' of a signal’ in ‘ICASSP’,
1990, pp. 381—384.

[8] ZADEH, L. A. : ‘Fuzzy aets', In]. Control, 1965, 8, pp. 338—353.

190 Proc.l.O.A. Vol 16 Pan 5 (1954)

  


