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INTRODUCTION

Since any sound is characterised by a unique waveform facilities for penerating
waveforms are very important in the field of electronic music. Using a digital
computer any mathematical function can be generated, piecewise if necessary,
and converted to an analogue voltage signal and thence to sound. However, the
correspondence between this function and the resulting sound, although
unambiguous, is often far Erom cbvious, Moreover, the use of a method of sound
synthesis of such generality is often unjustifiable because a high proportion
of the resulting sounds are almost indistinguishable and of very limited
musical valuve.

In practice so-called additive methods of synthesis are often preferred. By
means of hardware or software a number of sinusoidal components with chosen
amplitudes and phases are summed to produce the desired signal. The practical
restriction on the number of sinusoids available limits the number of sounds
that may be produced. However, since the ear acts as a Fourier analyser and
many natural and musical sounds have approximately discrete frequency spectra,
this synthesis method is both a fairly intuitive and a useful one.

The provision of a large number of pure sinusoids can be quite demanding on
hardware or software and so the use of alternative functions suggests itself.
In principle, any set of funetions which is complete and orthogomal can be used
as the basis of a synthesis method. The advantage of choosing Walsh functions
(1) is that they are rectangular, two-state functions (see Fig.1} and thus
readily represented and generated by digital means.

The derivation of the Walsh spectrum corresponding to a desired signal waveform
is ‘analogous to Fourier analysis. In both cases determining the appropriate
amplitude for each constituent function involves integrating the product of
that function and the function being analysed. In the Fourier analysis of
arbitrary functions numerical integrations, involving time-consuming complex
arithmetic, may be necessaty. The corresponding Walsh analysis is much simpler
because the Walsh functions are, in effect, either zero or unity and so may be
placed outside the integral sign. Thus only the function to be analysed need
be integrable for an exact determination of the.Walsh function amplitudes, and
even a numerical integration reduces to a simple summation, Moreover, there
exists a Fast Walsh Transform which is analagous to the Fast Fourier Tranaform
and reduces calculation and memory requirements in a similarly dramatic way.

Thus Walsh analysis and synthesis seems an attractive alternative to the
Fourier approach and indeed several methods for gemerating the Walsh functions
and -using them for musical sound generation have been proposed (2,3). We now
present a flexible, software approach to Walsh function generation and use. A
remaining problem iz that each Walsh function contains a harmomic series of
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Fourier-type components and so predicting the results of a Walsh synthesis is
more difficult and less intuitive than the wore common Fourier synthesis, This
problem is considered in the final section.

SYSTEM HARDWARE

The Walsh-function generator system hardware invelves a standard Nascom I
microcomputer (based on a Z80D CPU chip) with 64k of RAM, a VDU and cassette
storage. Two additional pxeces of hardware were specxally designed and built
for the project.

(i) A light-pen facility (4) for inputting data to control the amplitude
envelopes of the functions.

(ii) A voice card for producing the sound signals. This contains its own Z80
CPU, 4k of on-board RAM and té digital-to-analogue converters and thus
has considerable flexibility and autonomy. Controlling programs and data
are transferred to it from the host computer by direct memory access.

SYSTEM SOFTWARE

In order to ensure efficient data exchange between various parts of the system
and satisfactory speed of operation the software is written entirely in the 280
assembly language.

Data for the first 31 Walsh functions (see Fig.1) are stored as bit patterns in
an area of RAM. LUp to 16 of these can be selected at a time to form the
constituents of the output signal. By using the light-pen or keyboard input the
user can define a bank of up to 96 envelope shapes which can then be applied to
these functions. The envelopes may be assigned arbitrarily and independently to!
each function or, alternatively, a few selected shapes may be app11ed to sub-—
groups of the functions.

Convenient control of the system is facilitated by user-friendly, menu-driven
software, This allows the user to define, store, recall and screen—edit the
envelopes, which are structured in 16 blocks of 6.

SOUND SYNTHESIS

The sound spectra of conventional instruments and other natural sounds are
strongly dynamie, the amplitudes of the harmonics showing complex variations
particularly during the starting transient. Thus interesting sounds can be
synthesised by varying the amplitudes of a large number of sine components in a
similar way but this requires a lot of control data. Besides, as Chowning has
shown, the fact that there are complex variations is much more important than
the ptédlae form these variations take. Thus his Frequency-ﬂodula:ion technique
of sound synthesis (5}, which is simple and economic, involves somewhat
arbitrary harmonic amplitude variations but produces rich and interesting
timbres.
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This F.M. technlque does allow very useful control of certain gross spectral
features such as the presence or absence of odd and even harmonics and the
dependence of bandwidth.on intensity. For example, brass-like tones may be
aimilated by allowing all harmonics and contriving an increase in the high-
frequency spectral content with increasing 1n:ens1ty. Similarly, allowing the
odd harmonics to dominate and decreasing the intensity of the higher harmonics
as the attack proceeds tends to produce woodwind-like timbres,

We now consider whether the set of Walsh functions may be used to preduce such
rich timbres in an economical way. The Fourier components of the first 31 Walsh
Functions are given in Table 1. These are caleulated from the standard

T Wel(af) =490+ X (a cos 4L +b, sin ATHE)
An =3[ Wal(mE)cos MM E Lt ek.

For ¢ ath harmeaic of Whl (m,k) this can be reduced te

dam = Z [sm 2rrn(‘-'+') - Sin QITn.t J Wai (m,l:) ,&-_(m < 32)

E=-1é
It can be seen from Fig.1 that Wal(m,t} is an odd or even function depending
simply on whether m is odd or even. So for the odd functions any cosine
transform is zero and any sine transform is nonzero. The reverse is true for
the even functions. Thus the harmonics of odd Walsh functions have sine phase
and those of even ones, cosine phase, as indicated. A study of Table 1. reveals
several features which may be of use when considering how best to combine Walsh
functions for musical purposes.

(i) Pairs of functions are readily found (eg. m = 1 and m = 5) which have the
same harmonics but at different amplitudes and often with opposite phases.

(ii) No function contains all the Fourier harmon1cs although many contain all
the odd ones. .

(iii) The functions with m = Zk—), where k=1,2,3 ..., form a compleﬁentary
group containing between them all the harmonics. Many similar groups are
to be found.

(iv) As m increases so does the number of the harmonic with the maximum
amplitude in the spectrum of Wal(m,t).

From (i) we see that if, for example, Wal{2,t) is given a ramp-shaped attack of
length T and Wal{6,t) an identical attack delayed by T/2, the following will
occur. Harmonics 3,5,11,13,19,21,27 and 29 of Wal(2,t) will increase smoothly
in amplitude with a phase of either 0°® or 180°. Then at time T/2 the same
harmonics of Wal(6,t) will enter, but with opposxte phases. Since each of these
is greater in magnxtude than its counterpart in Wal{2,t}, the resultant
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amplitude of each of these harmonics will pass through zero, at different times,
and then grow with the opposite phase until the steady state is reached after a |
total -time of 3T/2. -Other pairs of Walsh Functions with similar complementary
spectra may be added with one functiod under each envelope to.creaté a
potentially 1nterest1ng attack to the sound.

From (ii).and (iii) it is clear that we can synthesise sounds which contain only
odd, only even, or all of the harmonics. From (iv) it follows that we can easily
move the maximum in the spectral envelope from low to high, or vice versa, dur1ng
the evolution of a sound. This is accomplished by choosing envelope shapes in
such a way that, say, lower-order Walsh functions give way to higher ones as time
progresses, ‘ :

We hope to present examples of sound synthesis at the ﬁeeting. '
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Table 1. Fourler inalysis of Walsh Functions from 1 to 31
{Functions have sine phase 1if underiined, cosine phase Lf not)
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