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INTRODUCTION

Since any sound is characterised by a unique waveform facilities for generating
waveforms are very important in the field of electronic music. Using a digital
computer any mathematical function can be generated, piecewise if necessary,
and converted to an analogue voltage signal and thence to sound. However, the
correspondence between this function and the resulting sound. although
unambiguous, is often far from obvious. MoreoverI the use of amethod of sound
synthesis of such generality is often unjustifiable because a high proportion
of the resulting sounds are almost indistinguishable and of very limited
musical value.

In practice so-called additive methods of synthesis are often preferred. By
means of hardware or software a number of sinusoidal components with chosen
amplitudes and phases are summed to produce the desired signal. The practical
restriction on the number of sinusoids available limits the number of sounds
that may be produced. However, since the ear acts as a Fourier analyser and
many natural and musical sounds have approximately discrete frequency Spectra.
this synthesis method is both a fairly intuitive and a useful one.

The provision of a large number of pure sinusoids can be quite demanding on
hardware or software and so the use of alternative functions suggests itself.
In principle, any set of functions which is complete and orthogonal can be used
as the basis of a synthesis method. The advantage of choosing Walsh functions
(1) is that they are rectangular, two-state functions (see Fig.1) and thus
readily represented and generated by digital means.

The derivation of the Walsh spectrum corresponding to a desired signal waveform
is analogous to Fourier analysis. In both cases determining the appropriate
amplitude for each constituent function involves integrating the product of
that function and the function being analysed. In the Fourier analysis of
arbitrary functions numerical integrations, involving time-consuming complex
arithmetic, may be necessary. The corresponding Walsh analysis is much simpler
because the Walsh functions are- in effect, either zero orunity and so may be
placed outside the integral sign. Thus only the function to be analysed need
be integrable for an exact determination of the.Walsh function amplitudes, and
even a numerical integration reduces to a simple summation. Moreover, there
exists a Fast Walsh Transform which is analagous to the Fast Fourier Transform
and reduces calculation and memory, requirements in a similarly dramatic way.

Thus Walsh analysis and synthesis seems an attractive alternative to the
Fourier approach and indeed several methods for generating the Walsh functions
and'using them for musical sound generation have been proposed (2,3)., We now
present a flexible, 'software approach to Walsh function generation and use. A
remaining problem is that each Walsh function contains a harmonic series of
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Fourier-type components and so predicting the results of a Walsh synthesis is

more difficult and less intuitive than the more common Fourier synthesis. This
problem is considered in the final section.

SYSTD‘I HARDWARE

The Walsh-function generator system hardware involves a standard Nascom ll

microcomputer (based on a 280 CPU chip) with 64k of RAM. a Wu and cassette

storage. Two additional pieces of hardware were specially designed and built

for the project. ’ -

(i) A light-pen facility (A) for inputting data to control the amplitude
envelopes of the functions.

(ii) A voice card for producing the sound signals. This contains its own 280

Cl’llI 4k of on-board RAM and lb digital-to-analogue converters and thus

has considerable flexibility and autonomy. Controlling programs and data

are transferred to it from the host computer by direct memory access.

SYSTEM 50mm

In order to ensure efficient data exchange between various parts of the system

and satisfactory speed of operation the software is written entirely in the 280

assembly language.

Data for the first 31 Halsh functions (see Fig.1) are stored as hit patterns in

an area of RAM. L'p to 16 of these can be selected at a time to form the

constituents of the output signal. By using the light—pen or keyboard input the

user can define a bank of up to 96 envelope shapes which can then he applied to

these functions. The envelopes may be assigned arbitrarily and independently to‘I

each function or, alternatively, a few selected shapes may be applied to sub—

groups of the functions.

Convenient control of the system is facilitated by user-friendly, menu-driven

software. This allows the user to defineI store, recall and screen-edit the

envelopes, which are structured in 16 blocks of 6.

SOUND SYNTHESIS

The sound spectra of conventional instruments and other natural sounds are

strongly dynamic, the amplitudes of the harmonics showing complex variations

particularly during the starting transient. Thus interesting sounds can he

synthesised by varying the amplitudes of a large number of sine components in a

similar way but this requires a lot of control data. Besides, as chwning has

shownI -the fact that there are complex variations is much more important than

the precise form these variations take. Thus his Frequency-Modulation technique

of sound synthesis (5), which is simple and economic, involves somewhat

arbitrary harmonic amplitude variations but produces rich and interesting

timbres. 
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This LH. technique does allow very useful control of certain gross spectral
features suchas the presence or absence of odd and even harmonics and -the
dependence of bandwidth.on intensity. For example, brass-like tones may be
simulated by allowing all harmonics and contriving an increase in the high-
frequency spectral content with increasing intensity. Similarly, allowing the
odd harmonica to dominate and decreasing the intensity of the higher harmonics
as the attack proceeds tends to produce woodwind-like timbres.

He now consider whether the set of Halsh functions maybe used to produce such
rich timbres in an economical way. The Fourier components of the first 31 Halah
Functions are given in Table I. These are calculated from the standard
equations Wa'flnlé) = 4a....né (a. cos :1th +1," sin 171'); b)

a. =%gMIME)“: DUDLEJE di-

For He nHl harmonic 0F Voibnfi)’ His e... be reluceul to
:5

a", = égfim 2,74%!) - sin lung's] M] (We) dim < 32)

It can be seen from Fig.l that Hal(m,t) is an odd or even function depending
simply on whether In is odd or even. So far the odd functions any cosine
transform is zero and any sine transform .is nonzero. The reverse is true for
the even functions. Thus the harmonics'of odd Halsh functions have sine phase
and those of even ones, cosine phase, as indicated. A study of Table I. reveals
several features which may be of use when considering how best to combine Walsh
functions for musical purposes.

(i) Pairs of functions are readily found (ea. m = l and m = S) which have the
same harmonics but at different amplitudes and often with oppositephases.

(ii) No function containsall the Fourier harmonics although many contain all
the odd ones.

 

(iii) The functions with In = Zk—l, where k=1,2,3 .. , form a complementary
group containing between them all the harmonics. Many similar groups are
to be found.

(iv) As in increases so does the number of the harmonic with the maximum
amplitude in the spectrum of Hal(m,t).

From (i) we see that if, for example, Hal(2,t) is given a ramp-shaped attack of
length T and Hal(6,t) an identical attack delayed by 1/2, the following will
occur. Harmonics 3,5,11,13,19,2l,27 and 29 of Hali2,t) will increase smoothly
in amplitude with a phase of either 0' or I80°. Then at time 1/2 the same
harmonics of Ual(6.t) will enter, but with opposite phases. Since each of these
is greater in magnitude than its counterpart in Ha1(2,t), the resultant
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amplitude of each of these harmonics will pass through zero. at different times.

and then grow withthe opposite phase until the steady state is reached after a ‘
totalr-time of 31/2. Other pairs of Welsh Functions with similar complementary ‘

spectra may he added with one function under each envelope Ito._create a
potentially interesting attack to the sound. ‘

From (ii) and (iii) it is clear that we can synthesise sounds which contain only
add, only even, or all of the harmonics. From (iv) it follows that we can easily

move the maximum in the spectral envelope from low to high, or vice versa, during

the evolution of a sound. This is accomplished by choosing envelope shapes in

such a way that, say, lower-order Halsh functions give way to higher ones as tine
progresses. '

we hope to present examples of sound synthesis at the meeting. ‘
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