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I. INTRODUCTION

Hidden Markov modelling (1W) of speech signals inherits the property of temporal information ignorance of

statistical modelling techniques As a result. the time orderirtg of successive acoustic observations is partially

disregarded by the HMNL such that a number of different observation sequences may share the same model

u-ained only by one ofthem [5]. More seriously. we found that HMMs failed to recognise a oonsidaablc pro-

portion of their own training utterances [LS]. A solution. the temporal Markov model (1W) [5]. has been

proposed to compensate for the information loss. By adding the parameters of the TMM to the W. the

conventional hidden Markov model can be extended to a time—ordered HMM. The model can recognise its
training utterances (3997 utterances of 52 speakers) with accuracy of 99.2% compared with the HMM's 89.4%.

with the codebook size of 256. However. the model has little tolerance to unseen data. which resulted in a
relatively minor improvement (from 78.5% to 80.4%. tested on 3978 unerances of 52 unknown spmkers) in

speaks-independent recognition. In this paper. we present a method to irnpmve the recognition of unseen data

by applying fuzzy vector quantisation [10] to the model training in order to smooth parameters of the temporal

Markov model, The smoothed model has been tested on the same data as before. and the results are compared

with those of the unsmoothed one.

 

  

      

  
  
  
  
  
  

        

    
  
    

    

      

2. THE HMM’S TEMPORAL MODELLING PROBLEM

A hidden Markov model with discrete output distributions is defined on a state set. S=[r,. r; .... m]. and an

output symbol set. V=lvo. v.. A - - _ v,_,). The symbol set. V. can be the codebook in modelling of speech

signals. An observation sequence. denoted by 0=[0,.02. - - - . or). is assumed to be generated by its under-

- lying Markov chain. X=leX,. ' - ‘ . Xrl. where X.eS and 0.5 V. if a left-to-right stmcture is applied to

the Markov chain. the Markov process is forced to start at n. and to end in 3”. while its activity is restricted
to either staying in the present state. or moving on to the next state. if the process occupies state 3, for D,-

times. the number of observations generated by s, is D, as well. Since observations are state-dependent. an

observation sequence. 0. emitted by N states can be divided into N segments accordingly. and expressed as

0=l0,.0;. - ~ - . 0,4) without altering the temporal ordering of its components. With this notation. the pro-

perties of a left-to-right structured hidden Markov model are described by a set of parameters. an initial distri-

bution vector wild). - - ' .0]. a state transition mau-ix A=[a.-- . and a set of output distributions . B=[b,-(It)].

A word model consisting of the parameters is denoted by {:an . B]. The probability of model A given

sequence 0 can be wriucn as'
r-t I

ran.) = )0; Pong.) = )5, Imago.)1'[a,,,mb,,_,(0..t)] . (1)
t-I

where subscript j. indicates that the hidden Markov process occupies state r, at time n'. and Q stands for the

collection of all possible state sequences. (2.. 1. - - > .QJ ).

 

I w: mg the nut-nut d 12.31 Ihtuulhml the pp" , since u u: only ittteretled in finding .s uirting modal. I. which
muirnitel Pun). .
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Proceedings ol the Institute of Acoustics

STOCHASTIC MODELLING 0F TEMPORAL INFORMATION IN SPEECH

To be specific. we rewrite output distributions in the form of

b,(k)=P(0,=1J.IX.=.tl). lSjSN.OSkSM-I. ' (2)

= r(o.=v. 10.eo,)_

From Eq.(2). we can see that the temporal ordering between observations within an acoustic seynenl. 01-. is
disregarded. although the segmental ordering is represented by rt and A. As we know. a state usually gen-
erates a number of observations. These observations may not be the same. i.e.. their codewords are different
If we alter the ordering in which they were generated. a new patrem is produced by the same state. In other
words. state x,- docs not uniquely emit its observation patterns. To clarify me problem. we denote the number
of different codewords observed in 0,- by n,-. and the number of observations belonging to the kth category of
the n; codewords by lit. So. the number of Iotal observations in 0, is

III
0, = 2 1,. . (3)

.ul

The number of different permutations based on the segment is

I _ D-i

’ ‘ I,.:I,-,t - - - 1.5.! ' ‘0

Since the hidden Markov chain has N states. it may generate
N

I = 1-1 ’1' (5)in]

different observation sequences. In other words, these different sequences share the same model. Obviously.
this property is not desirable for the task of spwch recognition. since we only expect a model to represent the
properties of specific utterances. The problem is more serious when a larger number of utterances are used to
train a model. The number of possible utterances represented by the model is much bigger than the actual
number of training utterances (although this does not foUDw !!!). if some of these sequences happen to be the
same as some of the sequences used to uain another model. there may be little distinction between the two
models. The situation is more likely to happen in large vocabulary speaker-independent recognition than in
small vocabulary speaker-dependent recognition.

According to Eqs.(4. 5). the condition for a model to uniquely represenl its training pattern. 0. is l=I. which
implies ll=l for all j. However. the condition for I,=l. in turn. is n,=l. in such case. a state is allowed only
to generate the same obsen'ations. This directly leads to a solution of using a large number of states. How-
ever. adding more states does not guarantee to increase the recognition accuracy [8.9.11]. Rabiner el al [9]
pointed out that there is very little gain in using W: with more than live or six stares when the left-lo-right
structure with double skips is used. An explanation for the limited number of states is that faunas and dura-
[ion of different utterances vary enormously. For instance. the duration of an utterance in the database used
for following experiments varies from 18 to 126 vectors. when using a larger amount of uuerances from a
number of speakers to generate speaker-independent word models. it is unlikely that an algorithm could be
found which is able to assign the same observations to a state in order to make n,=l for all j. since a fixed N
is commonly used for all words of the vocabulary in hidden Markov modelling.

3. THE TIME-ORDERED HIDDEN MARKOV MODEL

The time-ordered hidden Markov model (TOHMM) consists of the parameters of a left'to-right hidden Markov
model generating 0. and the parameters of a temporal Markov model ('l'M'M) designed to model the temporal

soc Proc.l.O.A. Vol 12 Part 10 (1990)
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ordering of 0,s. The temporal Markov chain is a stationary l-step Markov chain. and defined directly on the
observation sequence. 0. Therefore. codebook V is the state seL and each codeword is a TMM state. To dis-
tinguish states of the TMM from those of the HMM. we call tltetn codeword states. or codewords for conveni-
enoe. if a vi is observed in the sequence at time t. i.e.. 0.=v.-. we say that codeword v,- is visited. The tem-
poral Markov model is described by aninitial probability distribution. 8 = [90.6]. - - - . 6u_,]. where

91 = P(0t="t) - (6)

and a transition probability matrix. E=(§.—,-]. whae

ti] = P(otol="i l0r=th - (7)

To be complete. we define a null codeword. v". to make ti,- = 1. in case that a codeword. v,-. does not
I

appear in training utterances at a word. where g... = I, For convenience. we use N=l6£l to denote the
model We also use the notations. 6(0,) and 5(0. .17.“) to represent the function relationship in Eqsté, 7)
respectively, when we are not interested in a particular state. v.-. which 0. equals to. The probability of model
1'. given 0. is

7—]
P003) = 9(0 i)H§(0. .Om) - (8)

Now. we denote the tirne~ordeted HMM by a set of parameters. M = (mA . B , 9. E). The probability of 0
being emitted by a hidden state sequence. (2;. of the TOW is

r—t
P0019.) = ntbt(01)9(0dI‘lmmubjhxarqmo..Om) (9)

T—l T—l

= introaria“.,b,,,,(o...)l-[e<oon t(0..o,.t)l
lul

= PO(x-Qi)'PDO") -

Since all of possible hidden state sequences. Q=lQ. ). should be considered. the probability of 0 being gen-
erated by a TOHMM is written as

Poo“) = §Fo(’s.Q.-)'Po(l') = Poal'roa’) - V (,0)

E400) states that POOH) can be computed from the product of two independent probabilities. P00.) and
POW). ll also indicates l.ll'.ll the parameter estimation of the TOHMM can be carried out by estimating a
HMM and aW separately.

4. FUZZY VECTOR QUANTISATION APPLIED T0 SMOOTHING MODELS

We denote the acoustic vector sequence of an utterance by x=lx,.x;. .xT). Art 1:, can be vector-
quantisod to a codeword. vi. in-oodcbook V. We use 0=[0.,02. - - - . 07) to denote the quantised sequence
of x. The conventional vector quantiscr assigns an unique codeword. v,-. to an acoustic vector, x,. The distor-
tion between it. and v5 can be denoted by d(,r,.v.-). Instead of assigning only one codeword to 1,. the [any
vector quantiser quantises the acoustic vector to L nearest codewords each of which is associated with a dis-

- tortion to x,. The degree of authcnt of x, to codeword v, isdefined as [13]

ProctoA. Vol 12 Part 10 (1990)
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L —l

1(v.lx.)={Ewan)/d(x..n)lW'”} . . (11)
hi

where F is a constant called fuzziness. and L is the number of codewords nearest to x,. To simplify computa-
tion. we choose F =7.

Owing to very limited data available for training models. statistical models are less accurate in predicting

unseen data than in predicting data already seen. To get around the problem, we can smooth the models with

additional information which is closely related to training utterances. By assuming that the acoustic features

of an incoming utterance may be close to the felines of one of Our training utterances. we can vector-quantise

x to L nearest observation sequences

0. = tot').or>.,...o,I-')}. m = 1.2 ...L.

 

instead of orte which is 0I = 0. At time I. an observation. 0,"). of each of the sequences is associated witlt
in affinity. 1..(r)=1(0."’=v,- |x.). By taking tlte mean of the affinity of each of the sequences over time t. we
can assign a weighting factor, 1,... to each of the sequences.

To smooth the temporal Markov model. we would like to define following probabilities. The initial distribu-
tion 0! the mth sequatce is

e."'l=r(o¥"=v.~)y.. . OSt'SM-l.and tsmsL. (12)

The transition probability from v,- of 0‘" at time I to v,- of 0‘" at time n+1 is defined as

{WE P(0.‘: =V,- IO.""’=V.-)1..7. . OsiJsM-t.and raw-st . (B)
l

With these probabilities, parameters of the temporal Markov model defined by Eqs.(6. 7 ) can be replaced by
[allowing dclinitions.’respectively

L

9r=£0lfl . and (14)

L I.

ti; = XI zit-5”"- (15)

The resulting parameters then are smoothed by a floor. e=lO“. Parameters of a HMM can be smoothed by the

interpolated co-occurrence smoothing [12] in addition to the floor smoothing.

5. EXPERIMENTS

5.1: Speech Data and Model Estimation

, Preliminary experiments have beenconducted on speaker-independent isolated utterance recognition to com-

performances of the HMM. TMM. and TOHMM. as well as the fuzzied TMM (FI'MM) and moth
(FfOHMM). using discrete probability disu-ibutionst The speech data used in the experiments are the BT
mphabetic database provided by British Telecom Research Laboratories. cansisting of 7975 isolated spoken
utterances of the letters or the British English Alphabet These utterances were spoken by 104 talkers each of

whom provided 3 repetitions of each letter. After being sampled at loud: using a l6bit AID convener and

cnd‘pointed by visual inspection. the utterances were further processed by a 27-chttnnel filter bank using a

Hamming window of 20m with 50% Overlap. In experiments. the data were divided into two sets: a training

set and a testing set. The training set contains 3997 utterances from 52 talkers (26 male and 26 female), The

testing set gives 3978 utterances from the remaining 52 urlkers (27 male and 25 female).

402 Proc.l.o.A. Vol 12 Par! 10 (1990)  
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We used the K-mcans clustering algorithm to generate a codehoolt of 256 entries. All of 66530 vectors for
the codehook generation were picked from tlte training set at random. In other words. the codebooks are
speaker-independent. A 5-state leti-to-right model structure was designated to HMMs. The training of ma;
adopted the standard forward-backward algorithm. Then. parameters of Hit/Ms were smoothed by afloor.
tr—l . since using the interpolate! co-ccctmence smoothing yielded a slightly hith error rate in recognition.
Parameters of TM‘Ms were estimated by accumulating the counts of diligent codewords. Then. the counts
were ntrmaiised to satisfy the oortstraint of the stochastic matrix. and then smoothed by a flow. 2:117". To
compare performance of tlte FI'OHMM with that of the TOHMM, we trait-ed two temporal Markov models;
one by a single obscuration sequence of each training utterance. and the other by 3 possible sequences of each
training token. i.e.. L=3. 11tc number oftraining utterances for each model is 154 at average.

5.1. Results

Therecognitiontaskwascarriedoutonboth theu-ainingandtestingsets.aswellastheE-setm.C.D.E.G.
P.T. V). IheE-setconsistsoflzlll unannoesftun thetesn'ng set. Webelicvcthattheteaonlhehlining
set is essential for comparing robustness ofdifferutt models. since all utterances in this set are prodictahle. Le.
they satisfy the assumption ofStatistics as far at the models consented. lfa model performs badly on this set.
the robustness of its modelling is questionable. The testing set is designed to test the generality ofa model
'l'ltetttlei-arneofamodeltounseendatn willheshownbythetestottthisset. WeusedtheViterbialgorithm
for computing Pom. The results are shown in Table I.

Table 1 consists of recognition results from both the training data set (RN) and the testing set (TST). each of
which contains multsfromW.TMM.T0mtm,l-'l‘hm.andmm. In thetahlewecanseethat
HMMs failed in recognising 10.6% of their own training. utterances. i.e.. HM'Ms made 424 mognition errors
out of 3997 training tokens. In contrast. the performance d TMMs is surprisingly good. Their failure rate is
much lower titan HMMs. For instance, TWs only have In than 0.l‘lr failure on the whole training set.
which corresponds to 2 errors. This figure shows how important the lempoml ordering of ohsavnlions is for
recognising spoken utterances. Not ntrprisingly. TOHMMs give a reasonable error rate ot‘ 0.8!. which is
slightly inferior to 1m The enur rates for fuzzicd temporal Markov models (PPM) and funied time-
ordaed hidden Markov models G’TOHMMs) are 1.7% and 4.6%. respectively. Both of them are low than
l-NMs. and higher than that of TMMs and TOHMMs.

As expected. recognition results of all models on the testing set are not as good as the ones on the training set.
Due to little tolerance to unsocn data. Thin/ls performed worse than HMMs. However. TOHMMs still give
higher recognition accuracy than both HMle and Ms For example. the error rate of TDHMM: is 19.6%.
1.9% lower than that of HMle and 8.1% lower than that of TMMs. Moreover. FrOl-IMMs give an even
lower error rate of 17.4%. which is 2.2% Iowa than Tot-W: and 4.l% lower than 141%. Obviously. the

Table I.
Comparison of recognition accuracy between different models.

in the table. ‘TRN' stands for the uaining set and ‘TST‘ for the testing set.

Recognition Error Rate (it)

Emm—
Alphabet (TRN) ' 1 0.8 1.1 6.6
Alphabet (rs-n 27.7 m 21.1 m

39.5 29.9 23.4 25.5
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better performance of FTOHMMs is ntainly due to fuuied TMMs. which can he observed from BMW“ error
rate of 2|.l%. 6.6% lows than TMMs. The test on the E-set confirms the superior performance of
le-lMMs with FIOHMMs‘ error rate of 25.6% compared to H'NDIW 34.0%. which indicates I greater dis-
tinction between different models can be shown by a more difficult recognition task.

SJ. Comparkorr with Other Approaches

There are similar approaches [4.6.14] which intend to cope with the correlation between observations. Brown
[4] proposed a model with Conditional Gaussian distributions (CGHMM). while Kenny gt ul [6] suggested a
Linear Predictive HMM (III-IMM). We compare our results as well asthe lestt'rtg condition with thoseof the
approaches except [14] which did not mention related experiments. We listed both test conditions and results
in Table 2. We use names of the first authors to stand for related experiments. From this table. we can see
that our test condition is more difficult that those of others. first ofall. the rating utterances are from bollt
male and female speakers. instead of male speakers only. Secondly. the teSt was conducted ill speaker-
indepetdent mode. instead of speaker-deputdent or mold-speaker mode. Finally. our vocabulary is relatively
larger than the one of [4].

Now. let us lookat the perfomnnce of these different models. Since test conditions of these approaches are
difl'etent. we could not compare their performance simply by their magnition rates. Instead. we listed the
recognition rate of a modified model against that of its reference model. Then. we calculated the recognition
improvement made by the new model. Since both [4] and [6) provided two sets of results using different
dimensional observation vectors; we listed all of them in the table to avoid any misrndmndirtg. For exam-
ple. we use CGHMIWGHMM to represent the conditional Gaussian HMM proptmd in [4] Must its reference
model. the Gausian HMM. The corresponding magnifion rates. in percentage. are 84.1/88.7(l2-d) and
73.1/89.l(22-d) respectively. The number in the bruckeu represents the number of dimensions of observation
vectors used in the experiment. So using lZ-dimensional vectors as input. the recognition rate of the CGHMM
is 84.1% against 88.7% of the GHMM. which indicates that the improvement 0! the CGH‘MM, in terms of
recognition rate. is 4.6%. Similarly. we have 46.0% improvement of the CGHMM witlt 22-dimeltsional

V Table 2.
Comparison of experimental results given by three similar approaches.
In the table. GHMM stands for the HMM with Gaussian disu'ibutions.

“
E-set ’
886

100 (Male only)
multi-spealrer

HMM/HMM
Recognition rate (9e) 81.] [88.7 (ll-d) 81.0 / 79.4 (8-d) 82.51785

73.] I 39.1 (22—d) 781/855 (IS-d) '

  

I Thir E-Iel marlin: o! 9 icon: (8. C. D. E. G. P. T. V. Z).
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vectors as inpuL Disappointingly. both seLs of results are in favour of the GHMM, rather than the CGHMM.

The results provided by [6] scent irtc0nsistent under different signal processing conditions. The LPHMM gave

a minor improvement of 1.6% as B-d vectors (7 cepstral coefficients and l differenced loudness) were used as
input. while it gave poorer performance than its reference model undu a higher precision of signal processing.
e.g. lS-d feauire vectors (7 cepstral coefficients. 7 differenced cepstral coefficients. and l differenced loud-
ness). However. differenced parameters have bear pmven to be a tray useful information for recognition [7].

The impmvement based on disregarding this information cannot be regarded significant. Therefore. we can
only have the impression that the LPl-MM performed worse than the Hth with conventional multivariate

Gaussian distributions One thing we have noticed from the results is that both the CGHMM and LPl-BdM
per-fanned worse when using relatively more accurate information provided by tlte signal processing than they
did when using less accurate information. which is just the opposite of the performance of their reference
model. the 0mm. We believe that at least the performance of a robust model should not deteriorate as more
useful information is provided. Since the experimental results of bath [4.6] were dLsappoina'ng. we can only

conclude that correlation may not be an appropriate representation for the temporal information existing
between successive observations.

In contrast to [4.6]. the TOHMM has improve the recognition rate by 4.1% on the most diificult task among
the three. its performance is consistent under diffuent vocabularies and testing data. All of its results in Table
l have shown that its performance is considerably better than its reference HMM. Furthermore. the number of
testing uuerances for our experiments is much bigger than those of [4.6]. which indicates that the results pro-
vided a rather convincing evidence of the TOl-IMM‘s performance.

6. CONCLUSIONS

The temporal information embedded in speech signals plays a significant role in speech recognition. The
discriminating power of the HMM can be enhanced by incorporating the parameters of the temporal Markov
model into the M. which results in the time-ordered hidden Markov model. However. the temporal Mar-

kov model gives little tolerance to unseen data. As a result. a minor improvement on recognition accuracy was

made on utterances from unknown speakers. c.g. the testing set. in comparison with a significh improvement
on the training utterances.

Owing to limited training data. a model-smoothing method using fuzzy vector quantieation has been suggested
to make the temporal Markov model more tolerant to unseen data The effectiveness of the smoothing has

been demonstrated by experiments. which have shown a superior pcrfomtance of fuzzied ‘l‘Ol-lMMs over other
models. Meanwhile. the discriminating power of 10Hth reduces in testing of recognition accuracy on the
training data. which indicates that a compromise must be made between a model's high discriminating power
and its tolerance to unseen data. Nevertheless. the smoothed time-ordered hidden Markov model has shown a
significant superiority over the conventional hidden Markov model by improvement of 4.”; on recognition
accuracy in modelling ofspcech signals.
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