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1. INTRODUCTION

Hidden Markov modelling (HMM) of speech signals inherits the property of iemporal information ignorance of
statistical modelling techniques. As a result, the time ordering of successive acoustic observations is partially
disregarded by the HMM, such that a number of different observation sequences may share the same model
wained only by one of them [5]. More seriously, we found that HMMs failed 1w recognise a considerable pro-
portion of their own training utterances [1,5). A soluton, the iemporal Markov model (TMM) (5), has been
proposed 1o compensate for the information loss. By adding the parameters of the TMM o the HMM, the
conventional hidden Markov model can be extended 1o a time-ordered HMM. The model can recognise ils
training utterances (3997 utterances of 52 speakers) with accuracy of 99.2% compared with the HMM's £9.4%,
with the codebook size of 256. However, the mode] has linle wilerance to unseen data, which resulied in a
relatively minor improvement (from 78.5% 10 80.4%, tesied on 3978 unerances of 52 unknown speakers) in
speaker-independent recognition. In this paper, we present a method 1o improve the recognition of unseen data
by applying fuzzy vecior quantisation [10] to the model waining in order to smooth parameters of the temporal
Markov model. The smoothed model has been 1ested on the same data as before, and the results are compared
with those of the unsmoothed one.

2. THE HMM'S TEMPORAL MODELLING PROBLEM

A hidden Markov mode} with discrete ouput dismibutions is defined on a state set, §=(s5, 52, ... S5, and an
output symbol set, V=[vy vy, - -+, vyo). The symbol set, V, can be the codebook in modelling of speech
signals, An observation sequence, denoted by O=(0,,0,, - - -, O], is assumed 10 be generated by its under-

- lying Markov chain, X=[X X, -- -, Xr}, where X,e$ and O,eV. If a lefi-o-right stuctre is applied w0
the Markov chain, the Markov process is farced 10 stan at s,, and 10 end in sy, while its sctivity is restricted
to either staying in the present stale, or moving on 1o the nexi siate, If the process occupies suate §; for Dy
times, the number of observalions gencrated by 5; is D, as well. Since observations are siate-dependent, an
observation sequence, Q, emitted by N siates can be divided into N segments sccordingly, and expressed as
0={0,0,, * -, Ox} without altering the temporal ordering of its components. With this notation, the pro-
perties of a left-to-right structured hidden Markov model are described by a set of parameters, an initial distri-
bution vector n={1,0, - - - 0], & swate transition matix A=[g;), and a set of output distributions , B =[b;{k)).
A word model consisting of the parametcrs is denoted by i—-(n,A ,B). The probability of model A given
sequence O can be written as !

r-1 '
PolM) = § Po(r ) = ¥ b0 0] 1a,,,.8,.,0m)] . m
[+] (L1}

where subscript j, indicates that the hidden Markov process occupies state 5; at time n), and Q siands for the
collection of all possible state sequences, {Q1.22. - @],

! We adop the nolation of [2,3] tiroughout the paper , since we arm only inleresied in finding an existing model, L. which
maximists Pg(R). R

a
1
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To be specific, we rewrite ouiput distributions in the form of
by k) = P(O=v [X,=5;) . 1SjSN, OsksM -1, ' @

= P(0,=v, IOgE 0,) -

From Eq.(2), we can see that the temporal erdering between observations within an acoustic segment, 0. i
disregarded, although the segmental ordering is represenied by n and A. As we know, a state usually gen-
craies a number of observations, These obscrvations may not be the same, i.e., their codewords are different
If we alter the ordering in which they were penerated, a new pattern is produced by the same suate, In other
words, state 5; docs not uniquely emil its observation pauems, To clarify the problem, we denote the number
of different codewords observed in O, by »;, and the number of observations belonging to the kth category of
the m; codewords by J;, . So, the number of 10wl observations in 0, is

/]
Di=% 1. 3)
k=l

The number of different pcrmutau'ons based on the segment is
5= —-——j! @)
LI

lﬂ!f,;! f_’.‘_.

Since the hidden Markov chain has N states, il may generaie

N
r=T1% ()

J=l

different observation sequences. In other words, these different sequences share the same model. Obviously,
this property is not desirable for the task of speech recogniton, since we only expect a model 1o represent the
properties of specific uterances, The problem is more serious when a larger number of utterances are used W
train a model. The number of possible utierances represenied by the model is much bigger than the actual
number of training uitcrances {although this does not follow '), If some of these sequences happen 1o be the
same as some of the sequences used (o train another model, there may be litle distinction between the two
models. The situation is more likely 1o happen in large vocsbulary speaker-independent recognition than in
small vocabulary speaker-dependent recognition,

According to Eqs.(4, 5), the condition for a model 10 uniquely represent its waining pattern, Q, is /=1, which
implies /;=1 for all j. However, the condition for 7,=1, in wm, is a;=1. In such case, a state is allowed only
to gencrate the same observations, This direcily Jeads to a solution of using a large number of states. How-
ever, adding mare stales docs not guarantee 0 increase the recognition accuracy (8,9, 11). Rabiner et a! [9]
pointed out that there is very litde gain in using HMMs with more than five or six swates when the left-to-right
structure with double skips is used. An explanation for the limited number of states is that featres and dura-
tion of different uttcrances vary enormously. For instance, the duration of an uaerance in the database used
for following cxperiments varies from 18 to 126 vectors. When using a larger amount of utterances from a
number of speakers to generale speaker-independent word modcls, il is unlikely that an algorithm could be
found which is able w0 assign the same observations 1o a state in order 10 make n,;=1 for all j, since a fixed N
is commonly used for all words of the vocabulary in hidden Markov modelling,

3. THE TIME-ORDERED HIDDEN MARKCYV MODEL

The time-ordered hidden Markov model (TOHMM) consists of the parameters of a Jeft-to-right hidden Markov
model generating O, and the parameters of a temporal Markov model (TMM) designed 10 model the wemporal
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ordering of O,s. The temporal Markov chain is a stationary 1-step Markov chain, and defined direcdy on the
observation sequence, O. Therefore, codebook V is the stale set, and each codeword is 2 TMM swte. To dis-
tinguish states of the TMM from those of the HMM, we call them codeword states, or codewords for conveni-
ence, If a v; is observed in the sequence at ume ¢, i.e., O=v;, we say that codeword v; is visited. The tem-

poral Markov model is described by an initial probability distribution, 8 = [8,,8,, - -+, 8y_,), where
8, = PO,=v). )
and a transition probability matrix, E={£;;], where
L = P(Ova=v; 10=v) . 0

To be complete, we define a null codeword, vy, 10 make ¥, &; = 1, in case that a codeword. v;, does not

/
appear in training utlerances of a word, where §5 = 1. For convenicnce, we use A'=[8.E) to denote the
model, We also use the notavions, 8(C,) and §(3,,0,.) o represemt the funclion relationship in Eqs.(6, 7)

respectively, when we are not interested in a panicular swae, v;, which &, equals 10. The probability of model
A’ given O, is

T
Po(l) =80 !)HE.I(OI D). &)
ta)

Now, we deaote the time-ordered HMM by a set of parameters, M = (1. A, 5,8, E}. The probability of O
being emitled by a hidden siate sequence, @;, of the TOHMM is

-1
Po(M.Q;) = =5 {0)8(0 l)I—,I[aij"]bj'_l(olcl)‘;s(ol O [€)]
T-1 -1
= [Ilbl(o 1)1141',;',_lbj,_,(om)]'[efo I)I-! £(0, -om)}

=P O(A-Qi YP oA} .

Since all of possible hidden siate sequences, @=[(, ), should be considered, Lhe prohability of O being gen-
erated by a TOHMM is wrilicn as

Po(M} = %:Pu{l-Q.-)'Po(l') = Po(R)Po(d} .’ (10)

Eq.(10) states that Po(M) can be compuied from the product of 1wo indt:pcn&cnt probabilities, Po{A) and
Po(d7). I also indicates that he paramcicr estimation of the TOHMM can be camried out by estimating a
HMM and a TMM scparately.

4. FUZZY VECTOR QUANTISATION APPLIED TO SMOOTHING MODELS

We denoe the acoustic vector scquence of an ulicrance by x=(xy, %3 - -, xr). An x, can be vector-
quantised to a codeword, v;, in-codebook V. We use O=(0,03, - '+, Or) 10 denote Lhe quantised sequence
of x. The conventional vecior quantiser assigns an unique codeword, v;, 10 an acoustic vecior, x,. The distor-
tion between x, and v; can be denoted by d(x,.v;). Instead of assigning only one codeword 10 x,, the fuzzy
veclor quantiser quantises the acoustic veclor 0 L nearest codewords each of which is associated with a dis-
- tortion to x,. The degree of atachment of x, 10 codeword v, is defined as [13}

Proc.t.O.A. Vol 12 Part 10 (1990}

© 401




Proceedings of the Institute of Acoustics

STOCHASTIC MODELLING OF TEMPORAL INFORMATION IN SPEECH

L -1
L. lx.)={Zld{x.,v.-)Id(x..u)l”""’} . an

k=)

where F is a constant called fuzziness, and L is the number of codzwords nearest 10 x,. To simplify computa-
uon, we choose F=2,

Owing 10 very limited data available for training models, statisiical models are less zccurate in predicting
unszen data than in predicling dawa already seen. To get around the problem, we can smooth the models with
additional information which is closely related (o training utterances. By assuming that the acoustic features
of an incoming wtierance may be close to the fealures of one of our training uierances, we can veclor-quantise
x 0 L nearest observation sequences

= [0, oM, m=12 .1

instead of one which is O, = 0. AL ime ¢, an observation, O™, of each of the sequences is associated with
its affinity, 1. (1 )=K0,"™)=v; |z,). By taking the mean of the affinity of each of the sequences over time 1, we
can assign a weighting factor, ¥,,, 10 each of the sequences.

To smooth Whe temporal Markov model, we would like to define following probabilities. The initial disuribu-
tion of the mth sequence is

0™ = PO =y )y , OSISM-1, and 1SmsL. o

The wansition probability from v; of O at time ¢ 1o v; of O™) a1 time t+1 is defined as
B = PO =v; 10/ =, Y\ Yy . O j<M -1, and 1Sm <L . 13)

)
With these probabilitjes, parameters of the iemporal Markov model defined by Eqs.(6, 7 ) can be replaced by
follewing definitions, respectively

9.-=i9."'" » and (19)

mol

L L
W= A (s)
The resulting parameleré then are smoothed by a floor, e=107*. Parameters of 8 HMM can be smoothed by the
interpolated co-occurrence smoothing [12] in addition to the floor smoothing.

5. EXPERIMENTS

51 Speech Data and Model Estimation

. 'Prellmmary experiments have been conducicd on speaker- -independent isolated ullerance Fecognition 19 com-
pare pérformances of the HMM, TMM, and TOHMM, as well as the fuzzied TMM (FTMM) and TOHMM
(‘FI‘OI-IMM) using discrele probability distributions. The specch data used in the experiments are the BT
Alphabetic database provided by British Telecom Research Laboratories, consisting of 7975 isolated spoken
uticrances of the leuers of the British English Alphabel. These utierances were spoken by 104 talkers each of
whom provided 3 rcpeuuons of cach letter. Afier being sampled at 20kHz using a 16bit A/D conventer and
endpointed by visual inspection, the uticrances were further processed by a 27-channel filier bank using a
Hamming window of 20ms with 50% overlap. In experiments, the data were divided inlo two sets: a training
set and 2 testing set. The training set conlaing 3997 uiterances from 52 walkers (26 maie and 26 female), The
testing set gives 3978 utterances from the remdining 52 wlkers (27 male and 25 female).
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We used the X -means clusiering algorithm o generate a codebook of 256 entries.  All of 66530 vectors for
the codebook generation were picked from the taining set al random. In other words, the codshooks are
speaker-independent. A S-stat¢ lefi-to-right model structure was designated 1o HMMs, The training of HMMs
adopted the slandard forward-backward algorithm. Then, parameters of HMMs were smoothed by a floar,
=107, since using the inerpolated co-occurrence smoothing yiclded a slightly higher error rate in recognition.
Parameters of TMMs were estimated by accumulating the counts of different codewords. Then, the counis
were normalised to satisfy the constraint of the stochastic matrix, and then smocthed by a foar, e=10~. To
comparc performance of the FTOHMM with that of the TOHMM, we trained \wo- temporal Markov modals:
onc by a single observation sequence of each training ulitrance, and the other by 3 possible sequences of each
training token, ie., L=3. The number of training utierances for each model is 154 an average.

52, Results

The recognition task was carried out on both the training and testing sets, as well as the E-se1 (B, C, D, E, G,
P, T. V). The E-sel consists of 1219 urterances from the testing set, We believe that the test on the baining
sel is essential for comparing robustness of different models, since all utterances in this s are pedictable, Le.,
they satisfy the assumption of Stalistics as far as the models concemed. 1f a model performs badly on this sez,
the robustness of its modelling is questionsble. The testing set is designed W test the generality of a model.
The tolérance of a model 10 unseen data will be shown by the test on this set. We used the Viterbi algorithm
for computing Po(3). The results are shown in Table 1.

Table 1 consists of recognition results from both the training data sat (TRN) and the testing set (TST), each of
which contains resulis from HMM, TMM, TOHMM, FTMM, and FTOHMM. In the 1able we can see that
HMMs failed in recognising 10.6% of their own training. unerances, i.c., HMMs made 424 recognition errors
out of 3997 wraining tokens. In comrast, the performance of TMMs is surprisingly good. Their failure rate is
much lower than HMMs. For instance, TMMs only have less than 0.1% failure on the whole training set,
which corresponds 10 2 errors.  This figure shows how important the temporal erdering of observations is for
recognising spoken uttcrances. Not surprisingly, TOHMMs give @ reasonable error rate of 0.8%, which is
slightly inferior to TMMSs. The error raies for fuzzied tsmporal Markov models (FTMMs) and fuzzied time-
ordered hidden Markov models (FTOHMMs) are 1.7% and 4.6%, respectively. Both of them are lower than
HMMs, and higher than that of TMMs and TOHMMs,

As expected, recognition results of all models on (he testing st are not as good as the ones on the training set.
Due (o linde tolerance 1o unseen data, TMMs performed worse than HMMs. However, TORMMs sill give
higher recognition accuracy than both HMMs and TMMs. For example, the emor rate of TOHMMs is 19.6%,
1.9% lower than that of HMMs, and B.1% lower than that of TMMs. Moreover, FTOHMMs give an even
lower emor raie of 17.4%, which is 2.2% lower than TOHMMSs and 4.1% lower than HMMs, Obviously, the

Table 1,
Comparison of recognilion accuracy between different models,
In the wble, “TRN' stands for the training sct, and ‘TST' for the testing set.

Recognition Error Rate (%)
Vocabulary HMM | TMM | TOHMM | FTMM | FTOHMM

Alphabet (TRN) | 106 | 0.1 0.8 1.7 a6
Alphabet (TST) | 215 | 277 19.6 211 174
E-sct (TST) %0 | 395 29.9 284 256

Proc.l.O.A. Vol 12 Part 10 (1930)




Proceedings of the Institute of Acoustics

2

STOCHASTIC MODELLING OF TEMPORAL INFORMATION IN SPEECH

better performance of FTOHMMs is mainly due w fuzzied TMMs, which can be observed from FTMMs® emrar
rate of 21.1%, 6.6% lower than TMMs. The test on the E-set confirms the superior performance of
FTOHMMs with FTOHMMs® emvor rate of 25.6% compared 1o HMMs' 34.0%, which indicates a greater dis-
tinction between different models can be shown by a more difficult recognition task.

§3. Comparison with Other Approaches

There are similar spproaches [4, 6, 14] which inlend to cope with the correlation between observations, Brown
[4] proposed a model with Conditional Gaussian distributions (CGHMM), while Kenny et af [6] suggested a
Lincar Predicive HMM (LPHMM). We compare our resulis as well as the testing condition with those of the
approaches except [14] which did not mention related experiments. We listed both wst conditions and results
in Teble 2. We use names of the first avthors to stand for related experiments. From this table, we can see
that our test condition is more difficult that those of others. First of all, the testing utterances are from both
male and female speakers, instead of male speakers only. Secondly, the st was conducted in speaker-
independent mode, insicad of speaker-dependent or multi-speaker mode. Finally, cur vocabulary is relatively
larger than the one of [4].

Now, let us look at the performance of these different models. Since test conditions of these approaches are
different, we could not compare their performance simply by their recognition rates. Instead, we listed the
recognition rate of a modified model against that of its reference model. Then, we calculated the recognition
improvement made by the new model. Since both [4] and [6) provided iwo sets of resulis using different
dimensionat observation voclors, we listed all of them in the table Lo avoid any misunderstanding, For exam-
ple, we use CGHMM/GHMM 1o represent the conditional Gaussian HMM proposed in (4] against its reference
model, the Gaussisgn HMM. The comesponding recogmition rates, in percentage, are 84.1/88.7(12-0) and
73.1/85.1(22-d) respectively. The number in the brackets represents the number of dimensions of observation
vectors used in the experiment. So using 12-dimensional vectors as input, the recognition rate of the CGHMM
is 84.1% against 88.7% of the GHMM, which indicates that the improvement of the CGHMM, in terms of
recognition rate, is —4.6%. Similarly, we have -16.0% improvement of the CGHMM with 22-dimensional

_ Table 2.
Comparison of experimental results given by three similar approaches.
In the 1able, GHMM stands for the HMM with Gaussian distributions.

Test Condition Brown (4] Kenny (6] Dai

Vocabulary Ese1? 60000 words Alphaber set
No. of words 886 399 3978

No. of speakers 100 (Male only) 1 (Male) 7TM+25(®
Test mode multi-speaker speaker-dependeant speaker-independent
Performance CGHMM / GHMM 1L.PHMM / GHMM TOHMM / HMM

Recognition rate {%) 84.1 / 88.7 (12-d) 81.0 /794 (8-d) B2.6/718.5
73.1 / 89.1 (22-d) 787 /855 (15-4)
Improvement (%) ~34.6 (12-d) or 16 (22-d) | 1.6 (8-d) or 6.8 (15-d) 4.1

2 This E-set concinis of 9 leuen (8, C, D, E, G, P, T, V, 7).
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veclors as input. Disappointingly, both seis of results are in favour of the GHMM, rather than the CGHMM.

The results provided by [6] scem inconsistent under different signal processing conditions. The LPHMM gave
a minor improvement of 1.6% as 8-d veciors (7 cepstral coefficients and 1 differenced loudness) were used as
input, while it gave poarer performance than its reference model under @ higher precision of signal processing,
e.g 15 feamre vectors (7 cepstral coefficients, 7 differenced cepsiral coefficients, and 1 differenced loud-
ness). However, differenced parameters have been proven (o be a very useful information for recogniton [7].
The improvement based on disregarding this information cannot be regarded significant. Therefore, we can
only have the impression that the LFHMM performed worse than the HMM with conventional multivaniate
Gaussian distributions. Ome thing we have noticed from the results is that both the CGHMM and LPHMM
performed worse when using relatively more accurate information provided by the signal processing than they
did when using less accurale information, which is jusit the opposite of the performance of their reference
model, the GHMM. We believe that at least the performance of a robust model should not deteriorate as more
useful information is provided. Since the experimenial results of both [4,6) were disappointing, we can only
conclude that correlation may not be an appropriate representation for the temporal information existing
between successive observations.

In contrast to (4,6}, the TOHMM has improve the recognition rate by 4.1% on the most difficult 1ask among
the three. Its performance is consisient under different vocabularies and testing data.  All of its results in Table
1 have shown that its performance is considerably better than its reference HMM. Furthermore, the number of
Iesting ullerances for our experiments is much bigger than those of [4,6], which indicales that the resulis pro-
vided a rather convincing evidence of the TOHMM's performance.

6. CONCLUSIONS
The temparal information embedded in speech signals plays a significant role in speech recognition. The
discriminating power of the HMM can be enhanced by incorporaling the paramelers of the lemporal Markov
mode! into the HMM, which results in the ume-ordered hidden Markov model. However, the temporal Mar-
kov model gives litlle tolerance to unseen data. As a resull, 2 minor improvement on recOgRItion accuracy was
made on utterances from unknown speakers, e.g. the testing set, in comparison with a significant improvement
on the training ullcrances.

Owing o limited training daa, a model-smoothing method using fuzzy vector quantisation has been suggested
to make the temporal Markov model more wlerant w unscen data, The effecuveness of the smocthing has
becn demonstrated by eéxperiments, which have shown a superior performance of fuzzied TOHMMs over other
models. Meanwhile, the discriminating power of TOHMMs reduces in testing of recognition accuracy on the
training data, which indicates that a compromise must be made between a model’s high discriminating power
and its tolerance to unseen data. Nevenheless, the smoothed ume-ordered hidden Markov model has shown a
significant superiority over the conventional hidden Markov model by improvement of 4.1% on recognition
accuracy in modclling of speech signals.

7. ACKNOWLEDGEMENT

The authors wish to thank British Tclecom Research Laboratorics for providing the BT Alphabetic database
for the cxperiments.

8. REFERENCES

[1) L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer, “'A New Algorithm for the Estimation of
Hidden Markov Modcl Parameters,'’ Proceedings of fEEE ICASSP-88 1 pp. 493-96 (Apr., 1988),

Proc.l.0.A. Veoi 12 Part 10 (1990}

405



Proceedings of the Institute of Acoustics

STOCHASTIC MODELLING OF TEMPORAL INFORMATION IN SPEECH

2]

13]
[4]

(5]

[6]

i7l
(B)
9
{10
[

(12}

406

L. E. Baum, T. Peirie, G. Soules, and N, Weiss, *'A Maximization Technique Occuwring in the Statistical
Analysis of Probabilistic Funclions of Markov Chains,”” The Annals of Mathematical Siatistics 41, No.
1 pp. 164-171 (1970).

L. E. Baum, **An Inequality and Associated Maximization Technique in Statistical Estimation for Proba-
bilistic Functions of Markov Processes,' fnequalities 3 pp. 1-8 (1972).

P. F. Brown, ""The Acoustic-Modeling Problem in Automatic Speech Recognition,” Ph.D. Thesis,
Deparument of Computer Science, Camnegie-Mellon University (1987).

J. Dai, I. G. MacKenzie, and J. E, M. Tyler, ““The Temporal Modeiling Problem of Hidden Markav
Models for Speech Recognition,” presented ar the Int. Conf. on Signal Processing "90/Beijing, (Oct,
1990),

P. Keany, M. Lennig, and P. Mermelsiein, "*A Linear Predictive HMM for Vector-Valued Observations
with Applications 10 Speech Recognition,” JEEE Trans. on Acoustics, Speech. and Signal Processing 38,
Neo. 2 pp. 220-225 (Feb., 1990).

K. F. Lee, *"Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX Sys-
tem,”” Ph.D thesis, Camegie-Melion University, Pitisburgh (1988).

K. M. Ponting, “'A Sutslical Approach to the Dewermination of Hidden Markov Model Structure,'
Technical report, Speech Rescarch Unit, RSRE (1988).

L. R. Rabiner, $. E. Levinson, and M. M. Sondhi, **On the Application of Vector Quantization and Hid-
den Markov Model 1o Speaker Independent, Isolaied Word Recognition,” The Bell Sysiem Technical
Journal 62 pp. 1075-1105 AT & T, (Apr., 1983).

E. H. Ruspini, “Numerical Methods for Fuzzy Clusiering,” Information Sciences 2 pp. 319-350 (1970).

M. I. Russcll and A. E. Cook, “'Experiments in Speaker-Dependent Isolated Digit Recognition Using
Hidden Markov Models,”" Technical Report, Speech Research Unit RSRE (1986).

R. Schwanz, O. Kimball, F. ¥ubala, M. W. Feng, ¥. L. Chow, C. Barry, and J. Markhoul, ""Robust
Smoothing Methods for Discrete Hidden Markov Models," Proc. of IEEE ICASSP-89 1 pp. $48-551
(May, 1989).

H. P. Tseng, M. 1. Sabin, and E. A. Lee, “Fuzzy Vector Quantization Applied to Hidden Markov
Modeling,"" Proceedings of ICASSP-87, pp. 631-644 {April, 1987).

C. J. Wellckens, "Explicit Time Comelation in Hidden Markov Models for Speech Recognition,”
Proceedings of IEEE ICASSP-87 1 pp. 384-386 (Apr., 1987).

Proc.l.O.A. Vol 12 Part 10 {19580)




