
 

Proceedings of The Institute of Acoustics

MID-CLASS PHONETIC ANALYSIS

FOR A CONTINUOUS SPEECH RECOGNITION SYSTEM

J. Dalby. J. Lover. and S.M. Hiller

Centre for Speech Technology Research

University of Edinburgh

INTRODUCTION

A hierarchical approach to acoustic phonetic analysis of speech for the automatic
segmentation and labelling component of a connected speech recognition system is
motivated by two characteristics of spoken English. The first is that the phonological
grammar of syllable and word structure of the language sharply constrains the
allowable sequences of segments in words. The second is that for some classes of
speech sounds. at least. relatively coarse and hence presumably robust identification
and classification techniques can be applied to partition the speech waveform into
segments which correspond to sets of phonemes.

In a series ofstudies conducted at MIT, V. Zue and his colleagues [1. 2. 3] have shown

that even large lexicons can be partitioned into rather small sets of words with
equivalent spellings in broad phonological class terms when only six phoneme sets.
stop. fricative. nasal. liquid. glide. and vowel are defined. For example Shipman and
Zue [1] report that the average frequency normalized equivalence class size of words
in a 20,000 word lexicon is less than 40 and that over one third of the entries have
spellings which are unique in broad class terms. On the assumption that coarse
classification of speech into segments made up of these'broad class categories by a
feature-based automatic acoustic analysis system can be performed more reliably
than phoneme identification. the reduction in the lexical hypothesis space provided
by knowledge ofthe broad class membership of segments in the input provides useful
back-up information to a lexical access component which is designed to take
advantage of it.

In the acoustic-phonetic analysis component of the automatic speech recognition
system being developed at CSTR we have taken this idea a step further and have
defined a set of MidClass phoneme categories. such as voiced stops. voiceless stops.
strong and weak fricatives. nasals. several vowel classes. etc. We believe that these
MidClass phoneme sets will prove to be easier to identify reliablythan (at least some
oi) the individual phonemes in the input speech and can show that extracting this
phonological MidClass information from the speech signal limits the lexical search
space of our system in a useful way. For the past several months we have been

developing a feature-based acoustic phonetic rule set for automatic MidClass
segmentation and labelling of speech which. for some of the MidClass categories
shows promise for future development.
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SYSTEM OVERVIEW

To provide an existence proof. as it were. that feature-based acoustic phonetic

analysis of continuous speech can be done and that a phoneme hypothesis lattice

could be produced which could be used by an appropriately designed lexical access

component. a simple acoustic phonetic segmentation system was developed. The data

fordevelopmeat of the segmentation and labelling rules came from a small set of 16

utterances produced by one speaker. The sentences were chosen from a larger set of

'phonemically dense sentences' [4] which were devised to contain various classes of

phonemes in several positions in the sentence. For example. the sentence 'Three

chefs face a thief contains strong and weak voiceless fricativesfront vowels. and /r/.

These sentences contained examples of all of the MidClass phonemes defined in our

system but obviously only a few of the possible segmental or prosodic environments

for the different MidClasses are represented in such a small sample of speech. The

evaluation data base consisted of these same 16 sentences spoken on a different

occasion by the original talker. the same 16 produced by a second talker. and a

further set of 16 different sentences which were similar in their phonological content

produced by the original talker. The 64 sentences were low pass filtered at 8 KHz.

sampled at 12 bit resolution at 16 KHz. and. after time-aligned phonemic-level

transcriptions were made by a phonetician, the sentences were analyzed using the

StarPak batch signal processing software developed at CSTR [5].

The signal processing algorithms employed in the current system derive a set of

acoustic parameter vectors for each of the analyzed utterances. These parameter

vectors. produced inga C computing environment are then passed to a Lisp processing

environment where the acoustic phonetic MidClass analysis rules are applied using

the CSTR SegLab software [6]. -

Two types ofacoustic-phonetic rules. threshold rules (TRules) and sequence rules

(SRules) are invoked to detect and classify the MidClass segments in the input data.

A third set of rules. which we call APRules is used to provide the analysis system

with derived acoustic parameters by computing simple functions such as the first or

second-order difl'erenee function of the input acoustic parameter vectors. Threshold

rules test the acoustic parameters (or derived parameters) against criterion values

and create feature segments for the threshold category wherever the relevant

acoustic parameter meets or exceeds the threshold. SRules take these feature

segments as input and set minimum and maximum duration criteria for a specified

feature or set of features. allow for the specification of a sequence of features (with

minimum and maximum durations). and specify a left and right context for the

feature sequence. SRules allow for both positive and negative values of the features

or feature sets to be specified and there is no limit to the number of features which

can be specified'in an SRule. The output of the SRules is a set of MidClass

segmentation labels. Multiple and overlapping MidClass segmentation hypotheses

are generated in this component and passed to the lexical access component of the

system. A sample of the output of the acoustic-phonetic rules set of the current

system is shown in Figure l. which shows the segmented human transcription for

the sentence 'Three chefs face a thief at the bottom of the display and the MidClass

hypotheses generated by the rules above the transcription. Each MidClass category

is represented by a capital letter abbreviation such as B for voiced stops. S for strong

voiceless fricatives. FV for front vowels. D for diphthongs, G for glides. etc.
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Figure 1: Sample output of the phonetic rule component

SYSTEM DESCRIPTION

Acoustic Parameters

The acoustic parameters of the current system were chosen on the basis of their
usefulness in discriminating between diiTerent classes of sounds based on reports of
existing feature-based speech recognizers [7. 8] or because of their known importance
in human speech perception (see e.g., [9] for a survey). Several channel energies are
used for making coarse category decisions such as discriminating between 'silence'
(stop consonant closures) where very little energy is present except at very low
frequencies, frication (fricatives or the aspiration following stop consonant release)
where most of the energy in the waveform is at relatively high frequencies. and
sonorant segments (vowels and the sonorant consonants) which havemost of their
energy in a mid-frequency region. Very low frequency energy is used for making
voiced/voiceless decisions for some of the MidClnsses.

Center frequencies. amplitudes, and bandwidths for the first 3 formants are
estimated using an implementation of an algorithm developed by McCandless [10].
These parameters are included in the analysis files for their usefulness in detecting
and classifying sonorant consonants and the vowels. An estimate of fundamental
frequency [11] is included in the analysis package for its usefulness in detecting
voiced vs. voiceless speech segments. 'Zero crossing rate and the normalized first
autocorrelation coefficient are included as potential frication detectors. and frame
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amplitude range as an energy measure which proves useful for fricntive

classification.

Threshold Rules

The strategy of progressively fine partitioning of the speech waveform is for the most

part implemented in the TRules which detect and classify the acoustic features which

the segment hypothesizing rules. the SRules, refer to. Three of these TRules.

'Silence'. ‘Fricationf. and 'Sonorance' are central to the strategy since many other

rules refer to their output via logical operators. For example. the criterion for

labelling a segment as 'silence' is that the energy in the signal above 300 Hz be below

an empirically determined threshold. Once a speech segment has been labelled as

'silence'. Le. a stop consoth closure or pause, further TRules classify the silence as

voiced or voiceless by applying adthreshold test to a measure of very low frequency

energy. This rule only applies to the feature segments created by the silence rule.

Similarly. frication is detected by applying a threshold test to a low frequency/high

frequency energy ratio and by a threshold test applied to the normalized first

auto-correlation coefficient. Once detected as frication. the speech segment is

'silence' segments. Sonorant segments are created wherever the input speech is not

silence, not frication. and where either the-pitch tracking algorithm had a non zero

value or there was sufficient energy in a mid-frequency energy channel to indicate

eimer a vowel. diphthong. or sonorant consonant Once a sonorant feature segment

has been created. additional rules look at rates of change in energy in the

mid-frequency region. location of the center of spectral mass. and the output of the

formant estimation algorithm to subdivide it into potential liquid. nasal. front and

back vowel segments. and so forth.

Sequence Rules

Since it is the case that many of the phonemes of English are composed of sequences

of acoustically very dissimilar events, the closure-burst—aspiration of the voiceless

steps or the closure-frication of the affricates being the most obvious examples. a

mechanism for oo‘ncatenating the feature segments output by the 'I’Rules is needed in

order to generate MidClass phoneme hypotheses. In the current rule set voiceless

stops are hypothesized whenever a silence segment which is also voiceless is followed

by a frication segment. But since it'is often the case that vocal fold vibration persists

into the closure phase of the phonologically 'voiceless‘ stops. there is also an SRule

which allows a short periodof voiced silence to precede the voiceless silence segment.

Similarly. the SRules create voiced stop hypotheses from silence segments which also

pass the 'voiced silence' threshold test but also allow a segment of voiceless silence to

' ollow since. again. the phonologically voiced stops are not necessarily characterized

by evident vocal fold vibration throughout the closure phase. The SRules which

create voiced and voiceless fricative segments treat the voicing distinction in a

similar fashion.

EVALUATION
As mentioned above. segmentation and labelling rules for all of the MidClass

segments (except the glidn ly. w/l were developed on a small set of sentences (16)

hot one speaker. _No effort was spent on attempting to achieve 100% correct

350 MOA. VolflPafl7(1908)

  



 

Proceedings of The Institute of Acoustics

MID-CLASS PHONETIC ANALYSIS

classification of the segments in this data base. however. Instead. the development
sentences were used to extract threshold and feature segment sequence information
that we expected would apply to any input utterance of similar phonological content
by any male talker so long as the tempo (fairly slow) and style (normal reading style)
were similar. Although the overall 'hit—rste' in terms of percent correct fer the
development data hasa at 63% is not particularly high. it appears that the modest
success of therules generalizes to the three sets of test data in a reasonably successful
way. For TestSet 1. the second reading of the original speaker. the overall score is
57%. For Test Set 2. the some sentences read by a second male talker, the overall
score is just as good at 58“? and for Test Set 3. 16 different sentences read by the
original talker the overall score is 49‘}, In order for a MidClass hypothesis to be
counted as correct. the hypothesized segment was required to overlap the
hand-placed segment boundaries byat least 50% after a normalizing procedure which
ensured that all possible paths through the segment lattice contained abutting
segments was applied.

The breakdown of the performance of the rules on the different mid-class categories
for all 4 data sets is shown in Figure2.
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Figure 2: Correct Hypotheses/Number of Phonemes x100. byCategory

From the figure it is clear that for some ofthe MidClass segments the identification
rates are fairly high while for others the scores are clearly unacceptable. For the
rules that are working at all well, there is quite good consistency between the data
sets in the display. For the voiceless stops (abbreviated 'P' in the dismay). strong
voiceless fricatives (Si. front vowels lFV). and back vowels (BV). correct hypotheses
were generated by the rules for over 70% ofthe segments in all four data sets. Voiceti
stops (B). weakvoiceless fricativea (F). and nasals (N) show scores of at least 50% for
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all data sets and in some cases the scores are substantially higher. The figure also

shows that the rules fail dramatically for some of the MidClass categories. Scores for

strong voiced fricstivea (Z),_liquids (L). and diphthongs (D) are very had indeed. and

the semester central vowels (CV) are poor» None of the weak voiced fricatives (Iv.

dhl) in the data Were detected as l'ricatives (they were often labelled as either stops or

as part of acfiacent vowels) .

These percentages show only the rate at which correct MidClass hypotheses were

generated by the acoustic-phonetic rule set. The success of the rule component in

generating accurate phoneme hypotheses must not be interpreted simply in these

terms. however. since a trivial and useless way of scoring %10() on this measure

would be to generate all of the possible MidClass labels for each segment that is

detected. Since the acoustic-phonetic rule component generates the input to a lexical

access component for which multiple phoneme hypotheses are acceptable in the

expense of processing time) so long as the correct one is present in the input lattice. a

measure of the number of wrong segment hypotheses generated by the rules is

needed. In Figure 3 we show the number of correct phoneme hypotheses expressed as

a percentage of the total number of hypotheses generated by the rules for each of the

MidClass categories and the four data sets.
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Figure 3: Correct Hypotheses/Fatal Hypotheses x 100by Category

These data an be regarded as the 'uonfusion metric' for the system and the amount of

aver-generatich ofsegment hypotheses by the rule set can be estimated by comparing

the more: in thisfigure with those in Figure 2.

DISCUSSION
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In spite of its obvious shortcomings. we believe that this prototype acoustic-phonetic
rule set has confirmed the claim of Cole et a]. [12] and others that feature-based
phoneme recognition is possible, and that we now have a framework within which the
development of a powerful speaker-adaptive acoustic-phonetic processor can be
pursued. Some of the segment classes were identified with an accuracy which, given
the simplicity of the rules. shows promise for generalizing to a larger data base and
for modification toward a multi-speaker task.

No phoneticinn will be surprised by the distribution of the scores for the MidClass
segments in our current system. The major weaknesses are just. where one would
expect them: for example. identification of liquids. glides. and diphthongs, where
fine-grained accuracy of formant tracking is essential. is very poor. as are the scores
for the voiced fricatives. where the varying proportion of voice/noise excitation of the
vocal tract causes simple identification techniques such as the ones attempted in the
current system to fail.

Nevertheless we have found the exercise of implementing the system a useful one
since both its modest successes and obvious failures point the way forward for our
research effort. Four areas which must be addressed in the next phase of our
workhave been identified. The first is the development of a speaker adaptation
component which can serve as a preprocessor to the acoustic-phonetic rule
component. Most. if not all of the criterion values used in the rules must be speaker
dependent and derived automatically from samples of speech collected at enrollment
time. Temporal as well as spectral normalization procedures must be implemented in
the adaptation phase. Second. computational mechanisms for implementing
segmental and prosodic context sensitivity for the rules must be developed since it is
clear that the acoustic information which specifies phoneme identity is encoded in
units of at least syllable size [13]. Third. mechanisms for weighting evidence from
multiple acoustic features must be implemented in the phonetic rules if they are to be
robust in the face of the variability they must cope with. If powerful mechanisms for
building in context insensitivity are not discovered and implemented. the elaboration
of the rule set to account for each possible context will surely result in the generation
of a segment lattice with so many hypotheses in it that even the most powerful
parsing mechanism will bog down. Fourth. a great deal of effort must go into refining
the set of acoustic features we extract from the waveform and into the development of
better signal processing techniques for extracting them.
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