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1. INTRODUCTION

During the Last few years a new generation of automatic speech recognizers have been
implemented. These recognizers were designed according to different constraints: many deal
with isolated words. others with connected or even continuous speech. Some are speaker
dependent while others are speaker independent. The achievements in the speech recognition
field are very encouraging. Many techmques have beentested and the designers can choose
between very different alternatives for implementing their systems. However. in spite of the
success of these recognizers with clean or laboratory environments, they have a limited success
in real life situations. Due to this fact. there are now an increasing interest in to obtain robust
recognizers capable of achieving comparable results in noise environments as the ones obtained
in controlled situations. This communication is fOCused on the problem of increasing the
robustness in the speech recognition field. Particularly we study an alternative for feature
extraction.

We are going to refer to the problem of speech recognition inside cars, with the
recognition of medium size vocabularies of isolated words. We describe a method for feature
exn-action and the scores obtained with a HMM based recognizer used to recognize isolated
words in bots-speaker independent and speaker dependent ways. We are going to study the
influence of ' erent factors on the feature vectors, consequently although for different tasks,
as large vocabularies or fluent speech. the behaviour could be different we try to obtain

. general conclusion on the characteristics of this methodology.

2. FEATURE EXTRACTION

The feature extraction block. in a general scheme of a speech recognizer, measures the
short-time spectral envelope of speech. This spectrum could be represented in different ways.
One very interesung alternative is to use LPC analysis [4] in order to obtain the spectral
envelope. There are efficient algorithms to obtain the LPC parameters from the autoconelation '
of speech signal. From the LPC parameters the oepstrum coefiicients are obtained. Additionally
from the cepstra vectors of the current frame. the previous and the next ones. we obtain the
derivatives of each cepstrum. The feature vector will consist on the first p-cepstra, their 1:
derivatives and the derivative of the logarithm of the shorH'ime energy. These features have
been used in different speech recognizers and prove to render good results. Unfortunately the
above method has some important drawbacks. Perhaps the more important is its high sensivity
to the background noise. ' ' - - ’

We are interested in recognizing speech with a low signal-to-noise ratio. SNR,
environments, near 10 dB or even less. Consequently the feature exu'action algorithm must be
designed to have low sensitivity to noise and to be capable of subtracting it from speech. We
like to have a method capable of the subtraction of time variant noises and also deal with
impulsive ones;
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Another effect which degrades the recognition scores is that speech signal passes
through different filters, one during training and another different during the recognition. This
situation can happen if the microphone has been changed or if the speaker speaks in a difi'erent
room. Consequently we would like to have some capabilities in the extraction block for
equalizing the speech spectra in order to overcome or reduce this problem. Additionally the
equalization can introduce some degree of speaker normaliration which is desirable in speaker
independent systems.

Our feature extraction block ideally must have the following characteristics: it has low
noise sensitivity. it is capable of noise subtraction and is capable of equalization These two last
characteristics can be can-led out even with time varying noises and speech channels. It is based
on the use of the Short-time Modified-Coherence, SMC, function, that is reviewed in the next
section.Then a SMC model of noisy speech is discussed. We carried out noise subtraction and
channel equalization in the SMC model. We are going to explore the efectiveness of this
feature extraction methodology that combines SMC with spectral subtraction. equalization and
cepstntm and its derivatives obtained from LPC. .

This section ends with a description of an isolated word recognizer based on
continuous density HMM and the experimental results obtained.

2.]. THE SMC REPRESENTATION I _ I
The SMC representation of the speech signal is carried out according to the diagram of

Fi 2. .
gum We assume that the input signal. x(n). to the feature extraction block has two

components:
x(n)=L(S(n)l +r(n)_ . y

The first one is a linear transformation of the speech signal and the other a nurse Signal
uncorrelated with the s(n). ' ‘

1.- z(n)=x(n)w(n-no); w(n) being a rectangular wtndow of length N and no the centre of the

windows We use N=320 speech samples (40 msec. at 8 kHz of sampling rate). Succestve
windows have an overlap of 30 msec. I
2.- Short—time coherence function is’defined according to [l]:

r" N

c(m)= 2w)z(t+m); 05mg—
21:0

3.- Short-time modified coherence. SMC:

. ch(m) = c(m)hw(m), 0 S m 5:;-

where hw(m) is a Hamming window.

rectangular Cohen“. Hammlng
wlndowlng nummon windowlng

Figure 2: The SMC representatlon
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The coherence function is a cross-correlation function between the first half on thewindowed signal and the full window. If noise is present and this noise is independent of thespeech signal then_c(m) can be viewed as having tWo aditive components one is bassically theshort-time correlation of the speech signal and tire other of the noise. Ifthis noise is while. onlythe first terms or c(m) are corrupted by the noise. ideally only c(0). In practice we have noiseswhich are not white but its autocorrelation function is significatively more affected for smalllags than the larger ones. In other words. the additive noise is not white but has a continuousspectrum. decreasing With frequency The reason for the selection of the coherence funcrioninstead of the autoconelation is related with the fact that for the largest lags the coherence isbasically a crosscorrelation function between two signals, which are contaminated byuncorrelated noises. Of course. we pay the price of decreassirtg the time resolution of the,spectral analysis but this is not an important drawback as we can see below. For small lags thecoherence function behaves as the autocorrelation although the average is taken in a half length.this efl'ect is diminished in ch(m) by using a Hamming window.
4.— Zerepadding of the SMC:

z(m)=ch(m); 15m5;

z(m)=0, g+15m5256
5.- FFI’ computation:

20:) = Fi-‘l‘limn; 0 SkS 255

6.- Evaluation of the absolute value of this FFI‘:
D(k) = lZ(k)|; 0 s k s 255

7,— Evaluation of the pseudo-autocorrelation of speech signal
PCk)=FFr'{D(k)l; OSkSp '

8.- Evaluation of LPC coefficients for a predictor of order p using the pseudo-autocorrelation
PG!) . .

In order to gain some insight in the above methodology we consider the linear
prediction adjustment of the autocorrelation function. If the speech signal has a p-order
model then its autocorrelation has a 2p model order. In other words, if the speech srgnal IS
modeUed with an all-pole filter. 1/A(z) then its aptocorrelation can be modelled by

Atler‘)
In order to avoid the use of a 2p order cm the square root of the spectra can be computed.
Figure 3shows a diagram of two alternatives for LPC predicnon of ch(m). We estimate the
autocorrelation through a FFI‘. In the first line of this Figure we show a method for
autocorrelation estimation of the coherence function, R(k), that could be used as input to the
Levinson-Durbin recursion but with the mentioned inconveniences. In the second Itne we
include the square root u'ansfonrtation in order not to duplicate the order of the LPC filter._ As
can he observed the same transformation can be achieved by the method of the third line.
reducing the number of FFl‘s. Then in SMC representation the central idea ts to fit the predictor

' to the correlation function instead of to the speech signal.'l'his idea has been used for reducing
bias in spectral analysis using all-pole models [9].
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AUTOOORRELAHON ESTIMATlON

Mk)

x0") I . >    
SPECTRAL COMPR ESSIDN   AUTOCORRELATION ESTIMATION

Flgure a: Interpretallon otiha SMC method

Of course, as proposed in [l]. the method of the third line is the prefered one for
reason of computational efficiency.’l'his is the method we are going to use for pseudo-
autocorrelation estimation. Since in the SMC representation we have a spectral domain
representation of the speech signal it seems attractive to can-y out spectral subtraction, to reduce
the noise. and equalization in this domain. This is the subject of the next paragraphs.

2.2.NOISE SUBTRACTION AND SPECTRAL NORMALIZATION
Since we have a spectral domain representation of the speech signal it seems natural to

take advantage of it in order to reduce the noise by means of a spectral subtraction technique.
The basic assumption is that D(k) is the sum of two terms, one is speech dependent and the
other noise dependent:

DUO = D: (k) + Du (k)
The noise subtraction needs an esdmation of the noisy part and subtraction of it from D(k).
Assuming that the estimation of the noise component is:

NCOt)
If we subtract it from But) we can obtain negative values which do not correspond to a Fourier
transform of a correlation function. In order to avoid this problem we establish a threshold T(k)
and some spectral normalization as it is show in Figure 4.

D1 (It)

TM

TM 110’   owned)

Flgun 4: Spectral compreselon and noise subtraction
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The spectral threshold T(k) has been estimated by averaging speech spectra andattenuating it by a fix quantity. It is maintained fixed. This non-linear transformation includes adynamic range compression for the D(k) which contributes to a normalization of therepresentation for different environments. The dynamic range is estimated for a specificenvironment.'l‘he problem which remains is how to estimate the noise compoan
In order to do that we have to classify the input signal in two classes: one correspondsto only noise and the other includes speech and noise. This classification is not very critical,since what is important is that we are able to detect when only noise is present. Ifwe make amistake and decide that a particular frame con'esponds to speech plus noise although it is reallya noise frame this error does not degrade significantly the procedure of estimating thecharacteristics of noise if it is not too frequent in which case the characteristics of the systemcan loose the ability ofestimating the time-varying characteristics of the noise

2.3. CHANNEL EQUALIZATION
The purpose of the channel equalization is to compensate for linear distortionsintroduced by microphones and room characteristics. We assume an average SMC spectrumfor speech. Let AS(k) be this spectrum. We estimate AS(k) by averaging the SMCrepresentation of clean speech and is mantained fixed for the recognizer. From a given speechrecognition session we estimate the average SMC representation of the speech by averagingD(k) .after noise subtraction. taken from different phrases, this average is session dependentand could be time varying if the speech channel is also varying.

We assume that there is a gain 60:) which satisfies:
A5(k)=G(k) ADM 'Tthe value of 600 is used for equalizing the SMC spectral representation after the subtraction0 noise:
D2(k)=D1(k) G(k)

We can estimate 60:) from a few seconds of speech taken in a given car and with themicrophone located in a given position making a measure of S(k). We supose that tltis gainchange significatively from one car to another and with the change of the position ofmicrophone. However this hypothesis must be verified.
When low frequency noise are present it is important to carry out band-pass filtering.This is the kind of noise we observe in cars. We do this operation of windowing in the spectraldomain by making G(k)=0 for low and high frequency. We select the low and high frecuencyindices depending on the contens of interfering noise. Then the SMC representation pemrits anefficient way of bandpass filtering.

2.3. UPDATING CONTROL
EQUALIZATION

When noise is present. especially if its level is high. it is not possible to detect withlow probability of error the speech and noise conditions. In fact, that is not necessary. Whatwe need is to detect speech at a sufficient frame rate in order to follow the possible time-varying conditions of the channel. In an analogous'way. it is necessary to update the noisecharacteristics by taking enough frames of noise. :The control of both conditions is carried out based on the frame energy of the signal.We define two thresholds. If the energy of the frame is under the lower threshold we decidethat this frame is noise. If the energy of the frame is greater than the highest threshold wedecide that speech is present _

FOR SMC SPECTRAL SUBTRACTION AND
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2.4. LPC ANALYSIS AND FEATURE VECTOR CONSTRUCTIdN
Using the pseudo-autocon'elation:

p(k)
we calculate the LPC coefficients by means of the Levinson-Durbin recursion [4]. From these
coefficients we estimate the cepstrum [4].Then we have a vector of cepstrum coefficients and
the logarithm of the short-time energy every 10msec.

As the next step we include a decimation by a factor of two stage. Every decimated
cepstrum and log. energy is obtained by averaging the three obtained in consecutive windows.
Additionally we calculate differential information of the ccpsmtm evolution. Following we
estimate the regression coefficients. After the decimation stage we have the characteristic vector
which include: p cepstrum coefficients, p regression coefficients and the regression of the
logarithm of short-time energy.
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Figure 5: Feature extraction block dlngram
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3. ARCHITECTURE OF THE FEATURE EXTRACTION BLOCK

In Figure 5 we can see a general overview of the feature extraction block. It includes:
SMC spectral representatton.noise subtraction, channel equalization, LPC analysis, LPC to
cepsrrum esiimation! decimation and regression coefficients estimation. The output of this
block rs the characteristic vector X(k).

4. EXPERIMENTAL RESULTS

For obtaining recognition scores we use an isolated word HMM based recognizerlt is
left-to-right.without skips, continuous densities l-[MhLEach feature component is modelled as
a Gaussian. different components are assumed to be uncorrelated. Then each state of the HMM
is characterized by two vectors. one with the mean value of each component of the
characteristic vectors and the other with their variances.

Training is carried out using the Grand-variance method [3]: after segmentation of the
sequence of vectors obtained for given word of the vocabulary the means and variance vectors
are estimated for each state. The first segmentation is uniform and the following ones are
obtained by means of the Viterbi algorithmThis iterative process is carried out few times until
convergence. We observe that four or five iterations are enough.

In order to evaluate the efectiveness of SMC spectral representation we carried out
several recognition experiments and observed short-time specna with different noise
conditions.

The first experiment compares the percentage of errors obtained when SMC spectral
representation are used for different sinal—tomoise ratios. SNR. with the errors obtained when
standard LPC analysis is carried out.These results are shown in the first and second row of
Table 1. They were obtained with a vocabulary of 35 entries. Each entry is a word or a phrase.
Each entry has been modelled with a HMM of 10 states. HMM models were trained with SNR
of 40 dB. Different noise conditions were simulated by adding synthetic white noise to clean
speech.
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TABLE 1: Percentage of errors obtained with LPC, SMC and SMC with spectral

subtraction.

We can observe that when we use SMC a lower percentage of errors were obtained for
the different SNR used. In terms ofSNR, the gain is about 15dB. g .

The efi‘ect of spectral subtraction can be observed too. For larger SNR the percentage
of error does not increase compared with the recognizer with only SMC. However for lower
SNR we can observe an aditional gain of about 15 dB in SNR.
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5. CONCLUSIONS

After studying different alternatives for feature extraction and noise reduction [10]. we
developped a feature extraction module whose main characteristics are: I

- It is robust against additive noise. SMC representation is significantly more robust
than the classical LPC analysis.

- We included in this block noise subtraction and equalization due that. we have a
spectral representation of signal. This reduced the computational cost compared wrtl't methods
of spectral subtraction used outside of this block.

- We incorporated regression representation of features because these parameters tends
to be more robust when noise is present since they are estimated by adjusting straight lines to a
sequence of features.

- This block incorporated different ideas that have beenused by other systems but, to
our knowledge, its complete design is new.
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