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Brass musical instruments act as a source of spherical waves for low frequencies while at higher
frequencies the directivity produces a diffracting beam. The directivity and radius of the wave-
fronts (and therefore the source position) may be expected to depend on the frequency in addition
to the geometry of the bell. In this work, experimental determination of the wavefronts prop-
agating from the bell section of brass instruments was performed using a moveable line array
of microphones. Exponential sine sweep measurements were performed for each microphone
position, effectively giving synchronised impulse responses at every microphone position in a
two-dimensional grid starting directly in front of the bell. Calculations were then carried out to
check to what extent the observed field was consistent with the predictions from multimodal the-
ory. The multimodal radiation impedance was only known previously for specific geometries such
as the infinite baffle, but here an extension of the theory is set out in order to simulate a trombone
radiating within a large radius, infinite length cylindrical pipe.
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1. Introduction

Modal decomposition in a brass musical instrument bore can be achieved assuming a piecewise,
axi-symmetric cylindrical model[l, [2, 3]]. Previously this has involved the assumption that the in-
strument is terminated into an infinite baffle. In this work the method is extended to allow for the
instrument to be set in an infinite cylindrical pipe, allowing energy to radiate both directly away from
the bell and diffracting around the instrument to radiate to the other side of the instrument bell.

2. Multimodal decomposition with hard walled cylinders

The discretisation of the bore into piecewise cylinders placed axi-symetrically along the z axis
involves hard walled discontinuities as shown in Figure [I] It is assumed that the axial distance be-
tween the surfaces S and S® is infinitesimal. The complex pressure amplitude in three dimensions
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(assuming cylindrical symmetry) is defined as [1]]:

p(r, z,t) = ZPn(ZWn(T) exp(jwt), Yn(r) = %’

where the infinite series must be truncated to a finite number for practical computation with the values
of v,, being the successive zeros of the Bessel function of the first kind of order one, r is the radius
from the central axis and the hard wall on the outside of the cylinder is at r = R.
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Figure 1: A cylinder of length d and cross-sectional area S(!) = 7 (R(l)) ? opens out into a cylindrical

pipe of cross-sectional area S?) = 7 (R(Q))Q.

Matching pressure on S™") (and leaving the pressure vector free on S — S(1) gives the condition
for projection of the pressure amplitude vector for the transverse modes, P, as [[1]]:

22 J1 (2Ym)

P(I)ZFP(Q)a an: )
o @ =) Jo(m)

2)

and Fy o = 1 and where z = RV /R®),
The vector of axial velocity amplitudes for the transverse modes (multiplied by the cross sectional
area), U, projects across this discontinuity in accordance to the equation:

Uu® = oW, 3)

where F'T is the transpose of F. As discussed by Pagneux et al [I]], this condition corresponds to
matching the acoustic particle velocity on S while setting the acoustic particle velocity to zero
on the hard wall (S®® — SM). The procedure for projecting the impedance matrix and pressure
and velocity vectors starting from a known radiation impedance and from the assumption of planar
velocity at the source is discussed in detail in Pagneux et al [[1], Amir et al [2] and Kemp [3] so will
not be reviewed here explicitly. It should be noted that projection of the impedance matrix through
a cylinder from surface 1 to surface 0 should be explicitly stated, however as this is a correction to
the formulae from Pagneux et al [1]] and from the original print of Kemp’s thesis [3]. This projection
formula for the geometry in Figure|[I]is:

70 = A - B(ZW + A)7'B, “4)

where A and B are diagonal matrices with the diagonal entries given by

-j  pc k —j  pc k
Ann) = —2 P2 and Bnyn) = —2—LC 8 5
(1) = o) S K, 2 Blwn) = e S ks, )
where, assuming lossless propagation,
kn = k= (7/R)?, (6)
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with k being the wavenumber. Lossy propagation may be simulated using k,, from [4} 2, 3]:

ky — i\/ k2 — (%)2 + <%> [S(en) — iR(en)], %

where R and 3 mean taking the real and imaginary parts respectively, with

en=(1=72/(PR)) ey + 6, €= (14+i)2.03x107°f2 ¢ = (1+i)0.95x 107° /2, (8)

where f is the frequency.

3. Monopole and dipole boundary conditions

Conditions for radiation from a membrane and disks in free space [, 16, (7] are known. These cases
feature a dipole type radiation as the front and back surfaces radiate in antiphase, as seen in Figure
[2Ja) giving a zero pressure condition at z = 0 beyond the edge of the source. The sound radiated
from the source in an infinite baffle, as seen in Figure [2(b) will, in contrast, have zero for the axial
component for the acoustic particle velocity on z = 0 beyond the edge of the source. Averaging the
pressure radiated from a source on a baffle (monopole radiation) and a dipole radiating in free space
yield the response of a one sided source radiating in free space as illustrated in Figure 2{c).

p(z=0)=0 vz(z¥0)=0

(a) (b) ()

Figure 2: Dipole source with no baffle (a), source in an infinite baffle (b) and one sided source with
no baffle (c). The pressure field for (c) in the range z > 0 should be the average of the pressure
fields for cases (a) and (b). Each radiating surface has an arrow to schematise the phase of travelling
pressure wave that radiates directly away from 2z = 0 and another arrow to schematise the phase of
the travelling pressure wave that diffracts around to impact z = 0.
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4. Multimodal decomposition approximating radiation into a cylinder ex-
tending to positive and negative infinity

Consider the case of an acoustic horn terminated in an (unbaffled) open end of cross-section S (R)
that is itself enclosed in an external cylinder of infinite length with a cross-sectional area S(¥) as
shown in Figure 3]

PG) i5(E) G

@ ) ©

Figure 3: A two sided dipole source of surface area S in a cylindrical pipe of surface area S*) is
shown in (a). A hard wall expansion from surface area S to surface area S(¥) is shown in (b). An
acoustic horn approximated using piece-wise cylinders ending with a radiating cross-sectional area of
S opening out into an external cylindrical pipe of infinite length and of cross-sectional area S¥)
is shown in (¢).

Clearly, the radiation occurs in a manner similar to the one sided, unbaffled source of figure [2|(c),
but in this case we must include the effect of the external cylinder giving a set of modes on the cross-
section S(¥), In analogy to the discussion in section [3| the impedance matrix on the surface S
will be taken as being the average of the impedance matrix which would be observed for a zero axial
velocity condition on ) — S(F) and of the impedance matrix which would be observed for a zero
pressure condition on S¥) — S In the case of the external pipe being infinite, the impedance
ZE) (on surface S)) is known to be given by the (diagonal) characteristic impedance matrix [1]], so
Z\B) = 7. where Z.(n,n) = pck/(SWk,).

Projection to S for the case of a hard wall (axial velocity zero on S®) — S(”)) is well known
to be given as [1]:

AU AL U )

where it is assumed that the axial distance between the surfaces S and S®) is infinitesimal and
where the subscript & indicates that the hard wall condition is being used for the surface S*) — (),

Projection to S9) for the zero pressure condition on S(¥) — S(%) is given here as (equating axial
velocity on S™) and leaving the vector free on 52 — S():

U = (s®/5®) pul?, (10)

where the subscript d indicates that the dipole type radiation field is being used for the surface S?)

with no wall present on the surface S(¥) — S(®)_ Similarly, equating the pressures on S(!) and setting
the pressure to zero on S?) — S() gives the vector of modal pressure amplitudes for the dipole type
boundary condition as:

P = (5P /5E) pTp. (11)

4 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

Defining the admittance matrix, ¥ = 7 —! such that U = YP, this then leads to the formula for
admitance matrix projection:

Y = (57 /sEN Y BT, (12)
The impedance for the dipole type field is then calculated by matrix inversion:
-1
Z\P = (yﬁ) . (13)
The impedance for the single sided radiator without baffle but in the external cylinder is then:
1
20 =2 (2" +2"). (14)

It should be noted that fewer modes should be used on the negative z side of the large discontinu-
ity (within the bore) so, in practice, truncation of Yd(R) before applying Equation |13|and, similarly,
truncation of Z ,(LR) in Equation is required to achieve good accuracy as discussed in section
Projecting the pressure vector from S to S(¥) assuming a one sided radiation condition involves
averaging the pressure calculated for the dipole condition, P((iE) from Equation and the pressure

for the hard wall condition,

p'” = ppiP (15)
from Equation [2}
1
P — (P + PP}, (16)

and the volume velocity on the surface S*) is given by:

U® = (z0) P&, (17)

4.1 Numerical procedure for pressure field calculations

The radius against axial distance for the internal bore of brass instruments was tabulated making
use of direct calliper measurements where possible. A piecewise cylindrical model of the internal in-
strument bore (to the negative z side of the surface S (R)), and a section of the external cylindrical bore
(to the positive z side of the instrument bell’s radiating surface S(®)), was then created in MATLAB.
The multimodal impedance matrix and pressure field were calculated using the following process:

e The (multimodal) impedance matrix (for a chosen frequency of interest) was set to be equal to
the characteristic impedance matrix for all axial points on the external cylinder with the number
of modes included in the calculation within the external cylinder labelled N (&),

e Equations |12 and @ were used to calculate Yd(R) and Z,(LR) respectively from Z(%) = Z_. These
matrices were then truncated to size N® x N to ensure good accuracy.

e The impedance Z® (on the surface S®) was obtained using Equation [14] (which in turn re-
quires the use of Equations [I3).

e The impedance matrix was projected alternately using Equation [ (for projection down a cylin-
der) and Z() = FZ®FT (for projection across a discontinuity) until the input of the brass
instrument was reached. The impedance matrix was stored at all steps along the bore.

e A planar source is assumed at the input so U = [1,0,0,0,0,0,0,...]" with size NW) % 1.

e Following this, the vectors were alternately projected along the cylinder to give U™ (as de-
scribed in Equation 25 of Pagneux et al [1]) and then projected across the discontinuity to
obtain U® using Equation [3| until the radiating surface S is reached, storing P = ZU at
each point along the bore.

e The vectors P(®) and U® are then zero padded to increase their size from N x 1 to N(&) x 1.

e The vector P! is projected to give P(¥) using Equation (which in turn requires using
Equations [11|and with Pl — pP — p@),
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e U is obtained from Equation

e The vector of axial velocities for the modes, U, is then projected along the external cylinder in
discrete points along the z axis using Equation 25 of Pagneux et al 1] and storing P = ZU at
each point.

e The pressure field was constructed by discretising Equation[I]along the radial direction for each
position along the z axis and mapping the real part to give a snapshot of the field at ¢t = 0.

5. Results

Results are presented in Figures ] and [5 and show wavefronts expanding spherically for lower
frequencies and directional propagation at higher frequencies. The theoretical results based on the
multimodal theory are here compared to the experimental data measured using an array of 1/4” Roga
RG-50 microphones microphones in the anechoic chamber of at the Institute of Musical Acoustics in
the University of Music and Performing Arts of Vienna. The experimental method will be the topic
of future publications. Results were normalised so that the real value of the pressure z = 0,7 = 0
was one and contour lines are placed at spacings of 0.1 of that amplitude. The experimental and
theoretical results show a good level of agreement, with the pressure wavefronts meeting the z = 0
plane at similar angles (showing an improvement with respect to using a hard walled expansion at
z = 0, as this would imply pressure contours meeting the wall at 90 degrees). It is also possible to
plot the theoretical radiated pressure field in the external pipe on the negative z side although this is
not shown explicitly in this paper.
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Figure 4: Real part of the normalised experimental and theoretical pressure fields for a Bach 36
Stradivarius series trombone. Theoretical results are for the trombone radiating into an external, infi-
nite length, 6m radius cylinder with 800 modes used in the external cylinder and 16 modes inside the
trombone bore. Experimental results were based on microphone array measurements in an anechoic
chamber.

ICSV24, London, 23-27 July 2017 7



ICSV24, London, 23-27 July 2017

2000 Hz Experiment

0.3

—. 0.25
0.2
0.15
0.1

radius (metres

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z (metres)

2000 Hz Theory

0.3

m
5
@ 0.2
=
wn
=
5.0
o

D I |

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z (metres)
4000 Hz Experiment

0.3
. 0.25
/2]
2
-ldE—_.; 0.2
> 0.15
=
E 0.1
0.05
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z (metres)
4000 Hz Theory j
0.3
)
=
® 0.2
E
%)
=
o 0.1
=
D i
-01 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z (metres)

Figure 5: Real part of the normalised experimental and theoretical pressure fields for a Bach 36
Stradivarius series trombone. Theoretical results are for the trombone radiating into an external, infi-
nite length, 6m radius cylinder with 800 modes used in the external cylinder and 16 modes inside the
trombone bore. Experimental results were based on microphone array measurements in an anechoic
chamber.
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