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1 - Preliminery comments. T

The resolving power undoubtedly is & major performance criterion for "spatial or
spectral ansiysis methods. This paper does not pretend to give a definitive .answer
to this question, but rather to bring to light its intricacy. Owing to the variety of
phenomena involved, several criteria will be suggested, one of them being possibly
the most suitable according to the circumstances. As an initial hypothesis, the
cross-spectral matrix computed from the output signals of the receiving array is
assumed to have been estimated without noticeable errors. Therefore, only the
problems to be due to the structure of the source field end to the fluctuating
medium will be considered. These latter, indeed, constitute the ultimate causes of
limitation.

It is well known that at most n-1 sources can be identified with 8 n-sensors array
via a parametric method (typicelly the Pisarenko method in the case of plane
waves and a linear array of identicel and equispaced sensors [1]). Consequently, all
the extra-sources (genersily the weakest sources] must be incorporated to the
background noise. In most cases, these sources constitute the main part of the
noise : it may be observed that they correspond possibly to multipaths coming from
some of the main sources. '

Considering the problem of the resolving power, only the two sources to be
separated are now to be claessified as ’signals” and all the other sources and
jammers to be clessified as "noise”. Observing that three channels are sufficient to
identify two sources, it is obviously edvisable to group together the sensors into
three ajirective) subarrays, so that the signals coming from the two sources of
interest be predominant. This question will be further developped through numerical
simultations on a typical example.

Also one must recall that all the continuous analysis methods (Capon, MEM-AR,
Borgiotti-Lagunas, MUSIC) asymptotically exhibit the same resolving power as the
Pisarenko method [2], which is then to be taken as a reference.

2 - Us 2SS9 3natig pfilte : BCESS ating.

A typical situation that may be encountered in aerial or underwater acoustics is
shown by fig.1, where it can be seen five dominant sources and e lot of weak
sources considered as jammers. Applying the Pisarenko method to the B8x8
cross-spectral matrix observed at the output of a eight-sensors linear array yields
the seven solutions visible on the figure. It is to be noticed that the two closely
spaced dominant sources (a) and (b) are not resolved and further that the spacings
between the strongest solutions are large enough to permit the application of a
spatial filtering technique.
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With @ 2n-sensors array, three overlapped n-sensors subarrays (for example) may
be formed ; for the above-mentioned 8-sensors array, the subarrays respectively
group the sensors 1 to 4, 3 to 6, 5 to 8 ; the weighting for a subarray may be 0.5,
1, 1, 0.5, which gives a 2x42 degrees beamwidth (between nulls) with a low level
(-24 dB) secondary lobe.
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In order to examine if some parametric solution or other corresponds either to a
single source or to two closely spaced sources, the whole array must be suitably
directed (pre-oriented) by means of phase-shifts applied to the sensors outputs. To
the question "What is the suitable pre-orientation ?°, the answer is given by fig. 2.
A three channels system always yields two parametric solutions but, depending on
the esmount of perturbation due to peresitic sources end jammers and then
depending on the pre-orientation, these solutions may vary considerably, as seen on
the figure. From the observation of numerous ceses, it could be concluded that the
presence of two sources (rather than one) almost surely is ascertained if the
estimated angular spacing locelly is nearly stable end if simultaneously the
estimated intensities are significantly great.

Moreover, the pre-orientation that yields a minimal angular separation gives the
better estimates and further corresponds roughly to a maximum of the 2nd
eigenvalue to 3rd eigenvalue ratio. These worthwhile properties though
experimentslly verified have not been theoretically proved to date.
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For the case of fig.2, the optimal pre-orientation appears to be equal to 0.2 deg, a
value which gives the final result shown by fig. 3. The resolution of the sources (a)
and (b) is satisfactorily achieved, this being due to the fact that the parasitic
sources and jammers have been largely eliminated.
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3‘ -A first criterion based upon the cross-spectral matrix eigenvalues.

In the case of spectral analysis, the covariance matrix eigenvalues are known to be
useful to conceive criteria for determining the number of spectral lines (eg.
Akaike, Rissanen [3] ). In the spatial case, additional phenomena occur, owing to
the turbulence of the medium and the variability of the reverberation. These latter
are to be considered as generating multiplicative {or modulating) rather than
additive noise effects. The influence of "true” additive noise components, mainly
due to parasitic sources, and their reduction vis spatial prefiltering were examined
in the last section.

In order to evaluate the interest of using eigenvalues based criteria in the spatisi
case, it is now advisable to introduce some propagation effects in the simulation.

This was done using a new situation depicted by fig. 4. The direction-finding
process (by means of the same antenna system a&s in fig. 2 and 3) is here applied
to the case of equal intensities sources crossing each other in the presence of a
lot of jammers. The SNR for one source before spatial filtering was 1.43 dB. The
pre-orientation of the array was optimally adjusted for the two sources merged at
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zero bearing. The dashed lines indicate the parametric solutions and eigenvalues
computed in the absence of propagation perturbations. It can be seen that the
anguler sources spacing is ill-estimated when less than about 3 degrees, a value {0
be compared to the 14.5 degrees Rayleigh limit for the 8 equispaced (A/2 apsrt)
sensors array here considered. Furthermore, the limit of resolution corresponds to
a 2nd eigenvalue to 3rd eigenvalue ratio roughly equal to 3.
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The fluctuating effects {especially resulting from the turbulence of the medium and
from moving reflectors) are too much complex to be examined in detail here. A
simple example is given by fig. 4 ; for all the sources and jammers, statistically
independent fluctustions have been introduced : a) for the angles of .incidence,
taken with gaussian distribution having a 0.3 deg. stendard deviation ; b) for the
intensities, taken with a distribution having & 50% relative standerd deviation and a
mean value equal to the one observed without fluctuations. It sppears that the
estimation results (solid line drawn), in spite of noteworthy eigenvalues
fluctuations, are not much worse than in the quiet case. The limit of resolution
may be estimated equel to sbout 5 degrees ; it corresponds to 8 meen value of the
2nd to 3rd eigenvelues ratio equal to about 5.

From the preceding examples, it may be concluded that the 2nd to 3rd eigenvalues
ratio is an acceptable performance index for testing hypothesis "two sources vs a
single source” ; nevertheless, the detection threshold greatly depends upon the
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nature of perturbations. If the noise matrix (including eny jammer or parasitic
source) neerly have the o2l form, then the threshold can be taken a little greater
than unity ; velues of 3 to 5 appear to be more realistic under current
circumstances.
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In order to obtain & straightforward algebraic expression of the resolving power,
the simple case of two equal intensities uncorrelated sources in the presence of
"white noise” may be considered. In such a case, the cross-spectral matrix of the
signals observed at the outputs of a n equispaced sensors array with uniform
weighting is as :

(1)

the real scelar quantity p being the intensity of the sources and ug , up their unit

directional vectors, the general form of which is, for plane waves and equispaced
sensors :

u=1/Ma1, e-i9, . e-iln-1qT

the quantity ¢ being the phase-shift between sensors, expressed as :

r=p{ug ug + uy, up) + 021

2

(2)

(3)

]

d
=21 —8in 8
M A

(A: wavelength, d: spacing between sensors, 8: bearing angle referred to broadside).
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For the case of two sources {a) and (b) to be separated, the quantities of interest
are :

(t=0,-0
{ a”’b d Bg + Op
' Pg - Py = 2T — T COS ———— . (4)

8 T30 A 2

1}

It can be shown that the eigenvalues of the nxn matrix " express as :

f [ sin(n8/2) ]
Ay =p|t s — —— |+ 02
n sin(8/2) |
4& [ sin(n§/2) ] ) (s)
= 1 - ———————— |+ 0 9
2=¥ n sin{8/2) |
A =02 , iy2

The hypothesis "two sources” is accepted if the following condition is verified :

Az
2 K1 : (5)
Ki(DZ) .

K4 being the detection theshold.

Using limited expansion for the sine, the resolving power, defined by the equality in
the conditions (6), can be found to be :

24 (Kq4-1) J1/2
§o(n)=|—s—r (7)
n(n2-1) R
R being the SNR defined as :
il
| e — . ' (8)
n a2
The angular resolving power then expresses as, in the limit,
1 24 (K4-1) |1/2
g (n) > (radian) . (9)
R-sco d B, + 6, n(n2-1) R

2T — Cc0os
A 2

If n sensors are assembled into three n/2 sensors subarrays (see sections 2 and 3),
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the interferometric spacing between subarrays is nd/4. Therefore, the angular
resolving power for near-broadside directions is given by :

2A | Ky-1 1/2
1, (3) > (redian), ; (10)
R—eo T1ind R
hence I:
g (3) n?-1 11/2
=2 (11)
1q (n) 6n

It appears to be more efficient to process directly the n x n matrix rather than
the 3 x 3 matrix obtained with prefiltering. This is true with the "white noise’
hypothesis. In the presence of parasitic sources, it is better to apply & prefiltering
procedure, as it was previously shown.

econd criterio t igenvalues vari
In many cases, the variability of the eigenvalues is the dominant factor of
limitation, for it corresponds to fluctuations of the estimated bearings. As a
practical rule, it may be considered that the limit of separability for two sources
is attained when the relative standard deviation (i.e. the standard deviation divided

by the mean value) of their estimeted angular spacing T is equal to a certain
constant smeller than unity. For sources near broadside, this condition may be

expressed, using the estimsted differential phase-shift 3, as : for K, » 1

(ver {8 1 (12)
E (5} Ko

where E {3} may be replaced by § in e first approximation. For the case of three
subarrays, which is of major interest to sepsrete closely spsced sources, as seen
in the preceding sections, the formulas (5) can be reduced to :

i 2y
Ay = —— (2 + cos 8) + o2
3
2p '
{Ay = —— (1 - cos 8) + 02 (13)
3
As:dz

From this, an estimation of the differential phase-shift § can be obtained. Using &
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limited expansion for the cosine gives :

Ay - Az
S6—2 3 (14)
1+A2—2A3

152

A further simplification occurs if using coherence matrix, rather than the
cross-spectral matrix, the the sum of its eigenvalues being equal to 3 ; then:

Ay - Az
1- 2

82 = 2

(15)

Assuming constant intensities for the two main sources end smell fluctuations, so
that the formulas (13) nearly remain valid, the following relationship can be
derived :

A Ay - A
82 var {8}=Var{ 2 )\a}zvar A2 - Az} . (16)
1 - A3

Thus, using (12), the resolving power can be characterized by :
85 = (K; ap)t  (redian), | (17)
where : 0 = [ var {A; - Az} ] is the standard deviation of A; - A5,

Applying this to the n-sensors array divided into three n/2-sensors subarrays
described in section 2 gives for the angular resolving power :

7, (3) = (kpop)t (radian). ‘ (19)

Tnd

This result may be compared to the expression (10}, which is to be rewritten in
the case of a 3 x 3 coherence matrix. From the definition (8) and the property
A' + Az + A3 = 3, it is found thet :

1 1 1
R=_____1‘,_,__ | (20)
2 Az ’

Thus (10) becomes :

2A
T, (3) = — [ 2A5(Kkq-1)]4 (radian). (21)

2
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For the situation of fig. 4, withd/A = 0.5, n = 8, "\3 = 0.03 and Ky = 3, this gives T,

= 3.2 degrees. Such a value concerns the case without fluctuations. Under the
fluctuating conditions of fig. 4, the standerd devistion of A, - Az is found to be

about 0.035. Then applying the formula (19) gives T, = 3.8 degrees for K, = 5, a
result that roughly agrees with fig. 4. :

5-A third criterion bssed on the veriance of the cross-spectral matrix elements.

For two eaual intensities sources (s} and (b), the cross-spectral matrix in the
absence of noise is :

r=plugug +uyup) | (22)
the unit directional vectors ug and uy, being given by (2).

The total received power may be characterized by (not equal to) the euclidian norm
squered of I, that is :

1
P - —tr r'r) . (23)

Noting thet the scalar product ug ub’is nearly equal to unity in the case of closely
spaced sources, it can be easily shown that :

4
hrig-— . (24)
]

In presence of noise, jammers or other perturbations, the measured cross-spectral
matrix may be expressed as :

r=r+r , (25)

where F i3 the perturbation matrix, the elements of which being assumed to have
zero mean value. The perturbation power may be characterized by the quantity :

webEllIFIZ}-e(1/mT3|IFR) (26)
i

Assuming that the elements of the matrix [ have the same veriance v {which is in
most cases verified) defined by :

v=E{Iry R} vy (27)
thenw = nv . (28)
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It ie important to remark that the cross-spectral matrix is here taken as the true
observation, rather than the sensors output signals themselvgg. Therefore, &
“special” SNR may be defined for one source as : '

12|[rl2 242
p = - = R (.29)
E{IIFIF} n?v
This quantity exsctly corresponds to the quantity R appearing in reference [4],
where the resolving power is defined by the condition (12) with K; = 1, that is:

the relative standard deviation of the estimated differential phase-shift § being

equ;ﬂ to unity. In reference [4], the Cramer-RaS bound for the variance of g is used
to calculate the angular resolving power, then resulting in :

(n) A 45 e ( ) (30)
T — di )
oM T 2 (n2-1) (7n2-13)p redian

In the case of the three subarrays system presented in the preceding sections and
in the conditions of fig. 4, the SNR as defined in (29) was found to be equal to 5.3 ;
with n = 3 and d/A = 1, this gives T, = 4 degrees. This is in accordance with the

previous results.
CONCLUSION

Resolving power is like the Lochness Monster, an attractive hundred-years-old
subject for conversation. Though some people think to have it recognized, it really
remains a quite elusive thing. It exhibits some different "solutions”, but one would
like to be sure that they could be linked together. There is most probably a lot of
works to be undertaken for finding out its hidden parts. A topic where underwater
propagation effects play an outstanding role indeed.
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