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Abstract

This paper is a contribution to the theory of parametric acoustic arrays
formed by nonlinear interaction of two coaxial, bounded soundbeams. Using
perturbation methods, we derive some simplified equations governing the gen—
erated sound field, taking into account diffraction, nonlinearity and dissi-
pation. Each equation has a limited range of validity, but the solutions are
matched to give a solution valid in the whole space of propagation.

We consider the case when the source of the interacting (primary) waves is
a circular piston. The nearfields of the primary waves are approximated by
well collimated plane waves, or by Gaussian function shaped beams, whereas
the Bessel function directivities of the farfields are approximated by
Gaussian function directivities. The effect of oscillations in phase and
amplitude in the transient region between the near- and farfields is also
analyzed. In a very simple way, the theory accounts for the variation in the
propagation curves and beam patterns of the generated sound.

We also consider briefly the case of two infinite plane waves. For strong
waves, a simple (Fay—type) solution is obtained for the farfield of a paramet-
ric array, based on the exact solution of Burgers' equation.

1. Linearized Soundfield

First, we consider the linearized soundfield. The source is a vibrating
circular piston of radius a, mounifid in an infinite rigid wall. The normal
velocity of the piston is Re Vole 1:), and the Rayleigh distance is denoted
r = kla [2, where k1 = mllco is the avenumber. Absorption is ignored for
t e moment. .-

It islwell‘known, for instance, from a very thorough numerical analysis
by Hobaek , that the sound is radiated as a well defined beam in the vicinity
of the source, with only small, regular fluctuations in amplitude and phase
angle across the beam. It is therefore a good model to assume a plane colli-
mated beam in this region [range r£§0(r /2n)]. However, the beam becomes “
more diffused and has larger fluctuations in amplitude and phase angle as it
is propagated away from the source. Yet, if klr >>l, a simplified analytical
expression for the sound pressure can be obtained in'this important transient
region of the beam . The beam is assumed to be_alon§ he z—axis, and the
following scaling is introduced, a = z/r, E e (xity ) la. A simplified
solution can then be found by substituting P1 = e 1 q I: in the linearized
wave equation and seeking a perturbation solution in ql, and applying matching
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principles. To the leading order in l/klrl, we find

 

.1 2p 1+t2 '
q1(a.E) =p° (1-e°)+T° e a J1(%)dt , (1)

lim PI (kla + w, a fixed) . It also leads to the correct asymp otic formula
(with Bessel directivity) as a + a (5/0 fixed). Here pc is the pressure
amplitude at the piston.

which matches an inner, plrne wave solution, PI near the piston £11m P1(a + o)=

0n the axis, we have
i

Q1(°-o) = p, (be?) . (2)

with amplitude 2 Iposin and phase angle” o = i + phase (sin 51;). At
the edge of the beam, we ve I

.- p 21 2
q1(a.1> -T°(1- eT Jo (5)) . (3)

showing an amplitude with only small fluctuations about I 32*] .

The results of Eqs. (2) and (3) are shown in Fig. 1. They.are in agree-
ment with the numerical results obtained by Hobaekl.

‘This more complete picture of the linearized sound, with changing ampli-
tude and phase angle, is, we believe, important in interpreting many nonlinear
effects. The effect of dissipation, so far neglected, can readily be taken
into account in these derivations, or simply accounted for by adding an
absorption factor in the results. ' '

2. Nonlinear Wave Eguation

The basic equation is given by

2

(nah 9%)vzp - 3—; = -VV=(o_v!) — v-ucz-cozwn . (4)
t

where p is the density. 3 the velocity, c and co are the isentropic speed of
sound at the local and ambient values of pressure and density, respectively,
and D is the sound diffusivity (effects of viscOsity, heat conduction,
relaxation). Further, ' '

2 3' I a
c2 = «:02 + (%) (9-90) + %(%) (9-00)2 (5)

do do -o=p°‘ o=p°

in this approximation where terms of relative order us and 82 are neglected.
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(M is the Mach number and S the Stokes number associated with the fundamental
modes.) This equation is obtained from the equation of continuity in exact
form, and an approximate force equation suitable to study wave motion. The
force equation is obtained when substituting for the pressure gradient an
expression obtained by linearizing the diffusion terms due to viscosity,
heat conduction and relaxation in the heat exchange equation and the equation
of state, but keeping all nonlinear terms.

3. Interaction - asilinear A roximation

We now consider interaction between two waves with finite, but moderate
amplitude, such that the quasilinear approximation can be used by substituting
the linearized solution in the nonlinear source term. We then have

v2? + x2? = Q (6)
as our basic equation in the generated pressure. Here Q is proportional to
the product of two collinear axisymmetric soundbeams with wave numbers k1,
k2(k1>k2) and absorption coefficients u1,o2. Further x = k + is, (k = kl-kz)
is the complex wave number of the generated difference frequency sound.

We substitute P = elxzq, and introduce the scaling z = Lo, (x2+yz)% = a5,
and obtain

2 2
l a £3 L 3 l 3 L —1XZ__‘1+21 ——q-+— —+ — q_=ke Q. (7)kL 302 R an 1 2 (3E E a; >

We seek expansions of q in powers of a small parameter, say n, which then
depends on the various parameters determining the problem. Here more than one
parameter is involved, and therefore several ordering possibilities exist.
A principal requirement, however, is that terms accounting for the different
effects of diffraction, absorption and nonlinearity are equally important to
leading order in n. If we assume L/ka2 finits, we mgy expand in powers of
n = l/kL (when L = LA = (o- + 32 — o)'1, L/ka = N ', where NA is the aperture
number introduced by Vestrheim in his classification of parametric acoustic
arrays). In the limit n + 0, we obtain the following simplified equation

2
3 L 3 l 8' L2114+-—(-—- +-—)q=—e Q . (a)k 30 kfiz a£2 E 35 k

This can readily be solved by introducing the Hankel transform of zeroth
order with respect to the lateral coordinate. The solution is matched to an
inner solution which satisfies the boundary condition q = 0 at z = 0, and
which is obtained by keeping the second derivative term in Eq. (7).

If we assume nonspre ding carrier waves and approfiimate the source term Q
with a Gaussian profile (:1 constant, A = poc;2(d2P/dp )p=p ) 1

o
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2
A+2 k 2 2Q = —E— 2 p0 exp(—U-n£ ) , (9)

p c
o 0

we find the following solution

. 22 '
o o e

n+2 P2 2 -o exp(u_i“+NAl2“)
q(0.E) = ‘i -—‘ o 2 (RE) 2 2 -du’ (10)

81! pc 1u+N [Zn
0 o A

0

where 9 = (kLA/Z)ls E/o, about the ratio of the observation angle to the 3 dB
angle in the Westervelt model4. This is in accordance with results derived by
Novikov et.al.5 on t e basis of Zabolotskaya and Khokhlov's equation, and used
by Hobaek and Tjdtta to calculate the variation of the 3 dB angle with range.

So far we have ignored the oscillations in amplitude and phase angle of the
carrier beams. The model is therefore expected to be good only for z:§0(r1/2n),
or in practice for a parametric array with L sEr1/2n. Neglecting these
oscillations may lead to significant errors if interaction in the transient
region is an important contribution to the total generated sound. Equation (1)
should be used to calculate Q in this region, but this leads to a more in-
volved mathematical analysis. On the other hand, an indication of how this
effect comes out is readily seen by modifying the Westervelt model: let us
assume a line distribution of sources on the axis, with amplitude given by
Eq. (2) instead of a constant. At observation distances r such that the
Born approximation is valid, we have

 

A+2 Poz 2 LA x )5q(r.e) =v-1 T p c 2 (ins) r—x 1 + iflNA(—2-)
D O

 

Hi1) ( NA(2X)!5 ,(11)

where 6 is the observation angle and x(e) = i + 2kLAsinze/2. This is the
scattering formula obtained by Westervelt with a correction factor given by
the parenthesis. 0n the axis, this factor may be expressed in terms of Kelvin
functions.

The correction is about 1 when NA 9 N, 2 when NA + 0, and 1.2 in amplitude
for NA = 1.56 (the value in Vestrheim and Hobaek's experiment7). This should
indicate that the phase and amplitude oscillations in the carrier beams lead
to a reduction in the amplitude of the generated difference frequency_sound
at large ranges. especially for high and moderate values of NA, i.e., for
array lengths which are short compared to the Rayleigh distanceof the generated
sound. For finite NA the beamwidth is also reduced (12% for NA = 1.2).

The case of spherically spreading carrier waves is discussed thoroughly
elsewhere8 and we here limit ourselves to only indicate some of the results
for the directivity of the generated sounds (see Fig. 2). The paper referred
to also contains the solution for a model with carrier beams formed by plane
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waves. Our results in Fig. 2 show good overall agreement with observations of
the half power angle by various authors, taken at different ranges from the
piston source. They also show that the directivity does ngt approach the
product directivity of the two carrier beams as ND = (RLA) lkla increases,
within the parameter ranges used. Only if 6£nr1)klk >>1 will the directivity
of the generated sound approach the product directivity. The reason for this
is, of course, the important property of the difference frequency sound wave,
that it contains a "linear part" (i.e., solution of the homogeneous wave equa-
tion) which is prepagated to the farfield region where it dominates the field.

4. Weak Nonlinearity — Expansion Based on Burgers' Eguations

The most general case is studied by working with the Fourier transform of
Eq. (4) and using matching of asymptotic expansion as previously indicated.
Here, however, we limit ourselves to discuss the case where the effect of
diffraction can be ignored, to leading order in the expansion parameter, in
the nonlinear terms.' Good models are then obtained by inserting the unidi—
rectional solution of the Burgers' equation into these source terms.

The exact solution of Burgers' equation can, in the nontransient time
region, be expanded in a double power series in the acoustic Reynolds numbers,
R1 = M1/Si = Voice/Du)i (i = 1,2) of the two waves (Feltinsen and Tjdtta9).
The series is convergent for all finite values of R1. The three first terms in
the expansion lead to the nonlinear taper functions, T1 and T2 for the funda-
mental harmonic components, '

  

2 2 'BR -Zulz 8R -Zazz _
T1 = 1 — 21 e [sigh 0:12)]2 + 22 e [1 - cosh (Zvalaz'zn (12)

l —2 d2?and similar expression for Tg. Here 8 = l + 390cc
If a2 = o1 andiR2 = R1 we ge do 0:90

—2u z 21T1 = 1 — %(8R1)2(1 - e ) (13)

which is the result derived by Hobaek and Vestrheim10 from energy considerations
and by.spplying the Manley-Rowe equations. But the correct source term in
Eq. £4), or in the Burgers' equation, is not obtained by simply substituting
Voie “12T1(z)cos wit (1 = 1,2, 1 = t - z/co retarded time) for the velocity
fields of the carrier beams (with vanishing field outside the beams), which is a
common practice. The reason for this is, of course, that the velocity field
to this order also contains terms with other frequency combinations. Insert—
ing the total field-into the nonlinear source term, several of these additional
terms will contribute to the difference frequency term to the same order of
magnitude as the taper functions. Interaction between the fundamentals and '
third order terms of the form cos[(2m1 - m2)1] and cos[2m2 -w1)T],and ofcos(2m I),
cos(2m21) with cos[(w1 + w2)r] all produce important difference frequency terms.
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It is straightforward to obtain the complete source term, on the basis of thethird order solution given by Faltinsen and Tjdttag, but the expressions are .in the general case algebraic involved, and will therefore not be presentedhere. By accounting for terms to this order,18ne can explain the finite ampli—tude effects observed by Hobaek and Vestrheim . Qualitativer the effectleads in their case (LA < r1/21i) to stronger attenuation of the source term,thus reducing the effective array length. The result is asymptotically abroader beam for the generated sound.

Finally, we note that the one—wave taper function is obtained by puttingV02 = 9 in Eq. (12). For a = a1, and R2 = R1, the expression is similar toEq. (13) with the factor 3/5 replaced by 1/8. This, and the discussion above,may indicate the errors introduced by inserting a one—wave solution with taperfunctions into the nonlinear source term, and Hereby calculating the generateddifference frequency'sound. The Bartram model is based on such substitutions,although with stronger nonlinearity than given by the first terms of our ex- .pressions. ‘

5. Strong Nonlinearity - Asmtotic Solution of Burgers' Eguation

lilackstoclr.l2 has used Burgers' equation to derive the Fey-type solutionfora single, finite amplitude wave. We have applied this approach to the case of .two interacting waves13 and obtain for R1>>l a simple asymptotic formula forthe generated difference frequency sound in the fsrfield region (outside theinteraction region). I

The solution of the Burg-ers' equation can be written

 

2
.

2Dc
.

,- o 3V = B -a—_-r- in (p , . (14)

where

to 2- +8Rsin wl'r-Z/Dzs +Bstinw r-2/ng¢ '71: dse s 1 l ( [2( )L 130:) (15) o'u

Here T(t) denotes transient terms that are ignored in the following, as
T(t) + O for t + an, 2 fixed . The linearized boundary condition
V=V°1coswlt + Vozcosmzt for t > 0, z = 0 are imposed. ,_

Solutions can now be obtained by expanding the integrand in Eq. (15) in a .Fourier—Bessel series and integrating term by term. Substituting for the
Bessel functions the asymptotic formula derived by Blackstock we obtain

2 _
v a ZDCO :1 “2 #81411“; sin [n(m1' u’2)1]; , (16)

n=1

C
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N —1
if ml — m2 and 2 >> ul . Here

. a a V
2 1 1 1 2Q=(m-m)nz+——+ =(a+—- +—)z (17)l 2 28R1 ZBRZ al 02 '

where a1 and 02 are coordinates in unit of shock-formation distance. The ampli-
tude of the difference frequency term is thus -2Dc°2(w1 —w2)/B sinh 9 .
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