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1. INTRODUCTION

In recent years there has been much interest in the recognition of speech in adverse conditions [1]. In
general performance is shown to decrease rapidly with increasing levels of background noise, unless
specific techniques are introduced to reduce its effects. Here. we address the complimentary task of
speaker recognition [2]. in adverse conditions. focusing on the effects of additive background noise. To
date. little work in this area has been reponed. but as for speech recognition. robustness to environmental
noise must be achieved before the technology can be used widely.

Historically. investigations into the effects of background noise have typically used Gaussian white noise
(GWN) to corrupt the speech signal. In this study the effects ofa range of noise types. including GWN. are
investigated using the defacto standard feature representations of mel-frequency cepstral coefficients
(MFCC) and perceptually based linear predictive cepstral coefficients (PLP). The relative level of
difficulty. as measured by speaker identification performance. for the different noiSes at various signal to
noise ratios (SNRs), is evaluated for the two features.

One approach to maintaining performance in noisy conditions is to aim to decrease the sensitivity of the
chosen feature representation to the effects of background noise. while retaining the required speaker-
specific information. Here the approach proposed in [3] is evaluated. This technique attempts to decrease
the sensitivity of cepstral based features to contamination by arbitrary noise, ie. no prior knowledge of the
noise type is assumed. This technique is investigated for a range of real world noise types to detemtine its
effectiveness.

2 EXPERIMENTS

To assess the impact that difl'ering background noise types have on speaker recognition performance. text-
dependent speaker identification experiments are used [4]. Text-dependent vector quantised (VQ)
codebook models are crea'ed and tested with speech data which is. in general. corrupted by additive noise.
One codebook is produced for each vocabulary item for each individual speaker. using a modified version
of the LBG clustering algorithm. The incoming test token is matched against all codebooks of the
appropriate word from all speakers and the model with the smallest accumulated mean square distance
across the test utterance is used to indicate the speaker. see Figure 1.

The codebook models are created always using clean speech. while the test utterances typically have noise
added prior to feature extraction. Here. two feature types are used. namely standard MFCCsIS] and
PLPs l6],

3. SPEECH DATABASE

The identification task is derived from a subset of the BT Millar speech database. This database was
collected in a quiet environment. using a high quality microphone. across five sessions. The speech was
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recorded at 20 kHz using 16 bits (linear) per sample. In these experiments the data is bandpass filtered to

telephone bandwidth and downsampled to 8 kHz prior to feature extraction.

During collection, each of 63 speakers responded to a visual prompt to say the digits 1 through 9, oh. um
and naught (in a random order) a total of five times in each of five sessions. The database correspondingly
contains 25 repetitions of each of the vocabulary items from each speaker. The sessions took place over a

period of approximately three months and speakers were encouraged to divide their sessions evenly across
this period.
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Figure l: The VQ codebook based speaker identification system.

The database is divided into training and testing sets. “Hie first ten versions. i.e. the fin two collection
sessions for each individual are reserved for training. with the remainder used for testing. All fifteen
repetitions reserved for testing are used as the standard test set. However. two standard training sets are
defined:

Set I: the first three repetitions from the first recording session:

Set 2: the entire training corpus of the first ten repetitions from the first two sessions.

A subset of speakers is adopted. The data from twenty males. all of approximately the same age is used.

Unless otherwise stated. all experiments use training set I. The vocabulary is reduced to be the ten digits I
through 9 and zero. with the exception of the results for the individual digits in Figure 3. This use of the
data is chosen to reduce the amount of computation required while maintaining a relatively difficult
speaker identification task. There are 20 x 25 x 10 = 5000 test tokens for this identification task. which
gives rise to a 95% confidence interval of Hi: for an example 20% error rate.
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4. NOISE DATABASE

The background noise data was taken from the BT Piper database. This database was recorded in situ.

directly over the UK telephone network and used a variety of handsets. The data was collected digitally in

A-law format at 8kHz and convened to I6bits (linear) for use with the Millar data For each different

noise. approximately 60 seconds of background signal was recorded. This was edited down to 30 seconds,

such that the entire recording was representative of a specific type of environment. Five noise types were

chosen for this work:

-a conversation between two people on the television (TV);

-crowd babble in a restauth (Babble);

-background ‘contemporary' music (Music);

- an office environment with keyboard clicks from typing at a workstation (Keys);

-car noise when travelling at around 70 mph. (Car).
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Figure 2: The spectrum ofthe five noises from the Piper Database. The noises are (from top to

bottom and left to right) : Car. TV. Babble, Music and Keys.
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Here speech uttetances with average SNRs of between clean (>30dB) and 2dB are used. At an SNR of
around 2dB the performance is so poor that more extreme conditions were not used. The signal level at
which to add the noise is determined from the word energy level and the noise energy level. For the word
this is determined individually for each utterance, whereas the noise signal level is averaged across the
entire 30 seconds. Therefore. the SNR of each individual word is not necessarily the quoted average figure.
given that the exact figure is dependent upon the ponion of the noise segment that is added to the speech.
This approach is chosen to reflect a realistic environment where the long term average SNR is known. The
spectrum of each of the noises is shown in Figure 2.

5. PERFORMANCE IN CLEAN CONDITIONS

The baseline speaker identification performance using MFCC features is shown in figure 3. i.e. with no
additional noise added to the test data. Performance is shown to level off at a codebook size of 8 for both
the training sets, with the larger training set consistently out performing the small set for a given size
codebook. as would be expected. A large variation between different digits is observed, with similar trends
for the two training sets.
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Figure 3: Speaker identification performance under clean conditions versus codebook size (left)
and for each individual vocabulary item with the codebook size set at 8 (right).

6. PERFORMANCE IN NOISE

The performance in noisy conditions is now considered. Figure 4 shows the speaker identification
performance using MRIC features and codebooks of sin 8 at 20 dB SNR for the range of noises
considered. The same general trend of improving performance with codebook size is observed. but there
are marked differences in absolute perfonnance across the noise types. The Keys noise is in general the
worst with the GWN degrading performance by a similar amount. The Car. Babble and TV noise degrade
performance significantly from that obtained using clean speech. but do not have such a dramatic effect as
the Keys and OWN. Also shown in Figure 4 is the variation in performance with SNR values from clean
(> 30 dB) down to 2 dB. Again a distinct ranking is observed. which is reasonably consistent across all
SNRs. An interesting observation is that the error rate falls off approximately linearly with the SNR in dB
for noise levels in the range 30 dB down to 2 dB. showing a smooth degradation as conditions women.
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Figure 5shows the results of the same set of experiments. but now using PLP features. Again a distinct

ranking of the different noise conditions is observed across all the codebook sizes, which is essentially the

same as for the MFCC case, One difference is that the PLP features appear to be more severely affected by

the Keys noise. with errors in excess of 70% for all hook sizes at 20 dB SNR.

From Figures 4 and 5 a number of more general observations can be made. In both cases the error rate is

significantly affected by the change from clean (> 30 dB) to 30 dB SNR. is level of noise that would
typically go unnoticed by a human listener. This highlights the sensitivity of the automatic speaker

identification system to noise. Perhaps the most surprising result is that the TV noise. which is essentially

two people talking. has the amongst the lowest impact upon performance. Similarly the most consistent

and well defined noise. GWN, is one of the harder noise types to cope with.
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Figure 4: Speaker identification performance in noise contaminated conditions using MFCC

features. Performance is shown vetsus models size for the difi‘erent noise types at 20dB SNR

(left) and versus SN'R for a fixed codebook size ofs (right).
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Figure 5: Speaker identification performance in noise contaminated conditions. as for Figure 4

but now using PLP features.
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Considering the contrast between the results for the different features it is shown that PLP features give the
best performance for only GWN. This is significant due to the large amount of work on noise robust
features that make use of GWN as the noise corruption. Our results make clear that such features may not
be optimal in environments more typical of real world situations.

7. INCREASING FEATURE ROBUSTNESS

In this section a modification to the MFCC processing is introduced in an attempt to increase robustness to
noise. In general cepstra may be defined as:

Cepstra = DCT(log [PU)]) .
where P0“) is some representation of the short term power spectrum and DCT is the discrete cosine
transform. As proposed in (3] we adjust the formulation to introduce an addition in the power spectrum.
which takes the form:

Cepstrawbm = DCT(log [Pm +K(f)]) .
where K0) is chosen here to be independent of frequency:

K (I) = It Vf .

For small values of the offset valuc k little difference is introduced. whereas as It increases the effect of
additional noise on the spectra is reduced. giving aninherently more noise robust feature. However as the
value of k is increase the class information component in the feature may reduce. The key issues that arise
from this type of modification are:

' what value ofk is optimal for different noise environments;

' what level of class discrimination information remains in a feature modified in this way; and
e what combination of background noise and offset value I: give rise to improved recognition.

The experiments reported here investigate the use of this form of feature. The offset is introduced for all
feature calculations. i.e. both training and testing data The speaker identification performance is then
assessed for the different noise types in cross testing conditions. as above.

The results at an SNR of 14 dB across the range of noise types are given in Figure 6. The performance in
clean conditions show that there is a steady decrease in identification performance. demonstrating the
reducing discrimination ability of the feature as It increases. What is also shown is the relatively large
increase in performance. particularly for the larger training set. across the whole range of noise types.
Specifically for the results with the larger training set. the speaker identification perfomtance improves by
over 20% by the addition of the offset set at l000l Even larger gains are seen for the GWN and Keys noise
types. For the smaller training set. the improvements in performance for the noise corrupted test data are
still evident, again with the GWN and Keys showing most benefit.

Comparing back to the spectra of Figure 2. it is evident that the fiattest spectmm is that of the Keys noise.
The spectrum of the GWN is also flat. It is therefore not surprising that the contamination that can be
compensated for the most should have spectra that reflect the frequency independent adjustment to the
power spectrum. A result that is less easy to understand is why the modified features show such an
improvement for the Car noise. which has a significant low frequency component.
In all cases the improvements in perfonnanoe for noisy conditions are obtained at the price of reduced
performance for the clean case. For the larger training set. the best performance on the noisy data is
achieved when k = 1000. at which point the clean performance has dropped from 4% down to I496 errors.
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Figure 6: Speaker identification performance using the modified feature representation versus
offset value k. for the three repetitions training set (left) and the ten repetitions training set (right).

8. CONCLUSIONS

Speaker identification experiments have beenperformed using test speech data corrupted by different
levels and types of background noises. The results demonstrate that GWN has a significant impaet on
speaker identification performance. 0f the five types of noise used. only keyboard clicks proved more
difficult to cope with. at a given SNR. Interestingly. a conversation on the television produced amongst the
lowest degradation in perfomtance. It is therefore concluded that it is non-trivial to predict the degradation
that specific types of noise will have on speaker identification performance.

The results also show that MFCC features appear to outperform PLP features in all noise environments.
except for OWN. This exposes a significant limitation of GW'N as a noise model and indicates that optimal
features for robust speaker recognition will be dependent upon the type of background noise present.
Therefore features that perform well in one noisr: environment may not be optimal for other environments.

A modification toMC features has been investigate and shown to give large petfonnance improvements

across all the types of noise corruption considered here at a H dB SNR. This improvement in noisy

conditions is however at the price of reduced clean speech perfomiance.
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