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1. INTRODUCTION

Obtaining reliable data on the auditory discrimination of violins has proved to be a very hard

problem. following effort over several decades by many workers in the field. This difficulty makes

it hard to investigate the physics of the instrument beyond a certain level. since it is not clear what

questions one is trying to answer. Data which would be equally significant and which might prove

easier to obtain relates to the playing properties of instruments. in other words to qualifies perceived
by the player rather than by a listener. Certainly. informal experience shows most players to be
reasonably discriminating and consistent in making judgements while playing unfamiliar
instruments. This paper discusses some physical measurements which can be made on an
instrument and which stand a chance of correlating with such judgements by players.

" The phrase “playing properties” covers a multitude of aspects of behaviour of the bow, suing and

instrument body. Some examples might be the variation from note to note. or from string to string.

or in an overall sense fi'om instrument to instrument. in the ease of playing with very light bow

force orin the responsiveness to vibrato. These are the particular areas which will be addressed in

this paper. There are many other possibilities. such as the variation between notes or between

instruments in the maximum range of dynamic level or tone quality which can be obtained within

the usual limits of acceptable violin pa'formanoe. A player's perception of such attributes may vary
considerably depending on the musical context. so care is necessary when collecting players'

reactions.

One might first think of trying to measure physical parameters which determine playing properties

by botying the violin by machine in some controllable way. and then trying to duplicate the
conditions in which the player was interested. Such approaches have indeed been tried, but have

always been found to he fraught with difficulties. The present Suggestion is to take advantage of

existing knowledge of certain aspects of violin physics to suggest rather simple conventional

vibration response measurements on the violin, which can beprocessed to produce predictions of
the playing behaviour which can then be tested against piayerjudgements.

2. MEASURING MlNMIM BOW mace

The first question which we address is that of the ease of playing a particular note with a light bow
force. This turns out to be related to the question of the relative susceptibility of notes to

undesirable “wolf' behaviour. We employ the well-know Analysis of minimum bow force by
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Schelieng [l]. He argued that the usual governing factor for minimum bow force is the breakdown

of the desired ‘Helmholtf motion of the suing into a difierent regime of non-linear stick-slip

oscillation in which there are two episodes of slipping rather than one in every fundamental period

The resulting sound is relatively weak in fundamental component. and is commonly described by
players as "surface sound".

Schelleng produced an approximate formula describing how minimum bow force depends on the

various parameters such as bow speed. bow position on the string. and behaviour of the suing

termination at the violin body. His analysis made some severe simplifying assumptions. so that it

is not easy to apply it in a quantitative fashion to real instruments However. if the steps of his

argument are followed through. it emerges that the part of the mlculation involving the most

doubtful approximation can be replaced by a direct measurement on the instrument. after which the

remainder of the calculation gives a plausible estimate of the nole-to-note variation in the minimum

bow force.

The argument begins by assuming that the suing is executing an approximation to the idealised

Helmholtz motion. For an ideal. lossless suing this is a free motion of the string which is

compatible with the presence of the bow — the bow does not need to do work since there are no

losses to be compensated to sustain a steady motion. This changes when we allow for losses.

Forces must be applied by the bow to the suing so as to compensate for energy loss. and if the

force demanded at any stage in the cycle exceeds limiting friction. the Helmholtz motion becomes

impossible to sustain. This is the criterion which governs minimum bow force.

Energy in a real string is lost by coupling into the instrument body. in internal friction during wave

travel along the suing, on reflection from the player's finger at the other end of the suing, and to a

small extent by direct sound radiation by the suing. The only one of these mechanisms which is

likely to produce significant variation between instruments or from note to note on one instrument

is the first. since the coupling between suing and body will naturallydepend on the material and

consuuctional details of the body (including the bridge as part of the body for the purposes of this
argument). We thus wish to calculate the ex“ force demanded at the bow due to the motion of Ihe

suing lennination in the bridge notch. since it is motion at this point which allows energy to be

exuacted from the suing.

Schelleng modelled this energy loss by idealising the termination condition as a simple dashpot.

By assuming also that the bowed point on the string is close to the bridge, he was then able to
derive his criterion. A real violin body is. of course, far more complicated than a dashpot. and it is
not obvious how one should even choose a value for an "equivalent dashpot" to use the criterion

quantitatively. However. we can circumvent this. The final stages of Schelleng’s argument are to

calculate the displacement waveform at the suing termination, and then to assume that the short

portion of suing between bridge and bow remains approximately straight. so that the force anomaly

at the bow is simply proportional to the displacement waveform through a geometric effect of

changing the angle of the suing where it meets the how. This last stage of argument seems quite
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mbust—fltebowedpointteallylsusuallyveryclosetothebridge. Thusifwecandetetmine the

displacement waveform at the bridge by some more plausible means than assuming a dashpot there.

weoouldreadilyestimatethelnfluenceofthiseffecton minimumbowforoe. '

But it is reasonably straightforward to determine this displacement waveform by direct

measurement. We could bow every note separately and measure all the waveforms, but there is an

easier qttinn available. Because we are always dealing with an approximate Helmholtz waveform.

we know that the waveform of force exerted on the bridge by the string is approximately a

sawtooth. Titus from a single measttnement of admittance at the bridge notch. or more easily on

one top corner of the bridge. we can calculate the required waveform for any desired note by using

theknovnilafrequencyspectrutnofasavnocthwave.

A sample of the results of this process appears in Figs. 1. 2 and 3. Figure 1 shows a measured

admittance function on the corner of the bridge. Figure 2 shows a family of displacement

waveforms. one for each semitone in the first octave on the D string. One cycle is shown of each

wwefmwithadmescaksuchthatthiscyclehaswnstmtwidth.1heverfical scaieisthesame

for each note. it is immediately apparent that both magnitude and waveform shape exhibit

sigtificant fluctuations between notes. Figure 3 shows the peak value of this waveform as a

function of note, over a 3-octave range. One would expect the minimum bow forceto exhibit

fluctuations which mirror this ctn-ve. although with a scale and an offset which are not quite so easy

to estimate because they dqaend on all the other loss mechanisms. which we are not determining.

it is worth pointing out immediame that the largest peak in Fig. 3. around Cult. corresponds to a

very well—known and gross fluctuation in minimum bow force — it is the “wolf note" frequency.

Indeed. one can regard Fig. 3 as a plot of“on susceptibility". This alternative description lends

some support to the hope that this measurement may indeed capture something of genuine

significance to players.

3. SENSITIVITY TOVIBRATO

Before seeking to correlate player comments with the predictions of the” meastnementsjust outlined.

it seems sensible to analyse another efi‘ect which is also likely to influence the perception ofa player

of the note-to-note variations in “ease of playing". This is the question of sensitivity of a given

note to vibrato. As has been pointed out in the past [2]. one of the most characteristic features of

violin vibrato is that it involves not only fluctuations of pitch and overall amplitude. but also cyclic

variation of the amplitudes of the different harmonics of the note. with markedly different

amplitudes and phases.

When a player notices that one note is less responsive to vibrato that another. it is presumably the

amplitude of these harmonic fluctuations which is varying. for a given imposed frequency

The player may well try to compensate by increasing the frequency variation. We would

like to have some measure of this fluctuation in responsiveness. analogous to Figure 3. We do not

Prec.l.O.A. Vol 12 Pan 1 (1990) . 773

 



 

Proceedlngs of the lnstltute of Acoustics

MEASURING THE PLAYING PROPERTIES’OF VIOIJNS

have any model quite as definite as Schelleng's to go on in this case, but it is easy- to sugest

quantifies which can be readily calculated and which might have roughly the right behaviour. For

my given note. we require some sort of weighted sum of the slope: of the frequency response
function at the fundamental and harmonics of the note in question. since the slope will govern. at

least to a first approximation. the satsitivity of harmonic amplitude to imposed frequency variation.

the right weighting for this sum needs to take account of (i) the frequency spectrum of the

Helmholtz motion, (ii) the fact that absolute frequency fluctuations increase proportional to

harmonic number. and (iii) the frequency sensitivity of the ear. Effects (i) and (ii) act in contrary

directions. while the right function to use for (ii) is not immediately clear. Some experimentation

is needed to try to define a suitable weighting. but thenone might hope that a very similar
measurement and subsequent computation to that seen in the previous section could he applied to

this case. ' -
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Figure l. Admittance measured on the side of a violin bridge

774 Proe.l.D.A. Vol 12 Pm 1 (1990)



   

(0
66

0
I
m
a
d
at

ru
n

'v
'O

'I
'G

Wd

Figure 2. Bridge displacement waveforms for each
sernirone on the D string of a violin. deduced from
Fig; 1. One cycle is shown in each case. The
venical scale remains constant Ihroughour.
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Semimne numba' (fmm G 296Hz)

Figure 3. The amplitude of the bridge
displaccmcnr waveform for each semirone
from G (196Hz) up 10E (1320Hz) '

SN
I'

IO
IA

:
I
O
S
E
I
H
H
E
M
O
H
J
D
N
M
V
'
I
J

El
l-

Ll
.
o
m
n
s
v
a
w

s
o
u
s
n
o
a
v

10
a
m
m
s
u
l
e
m

:0
s
B
ul

p
a
a
o
o
r
d

  



Proceedlngs of the Institute of Acoustics

778 ' Pmc.l.O.A. vm 12 Pan 1 (1990) 


