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INTRODUCTION

For many problems in musical-instrument acoustics, a good understanding of the
elastic and damping bebavicur of wood, with and without surface treatments, is
needed. As has been explained elsewhere [1,2], the simplest model of wood (as
an orthotropic solid) requires measurement of nine elastic and nine damping
constants. This is a difficult task, and some approaches to it are reviewed
here.

As a starting point, we consider the simplest problem of interest, that of a
flac place cut from the tree in such a way as to contain one of the prineipal
axes (called L{ongitudinal), R{adial) and T{ransverse)). Such a plate needs
only four elastic (and four damping) constants, for which we shall follow the
notational conventions of refs. [1,2] and call the elastic constants D, Dy, Dy
and D,. Some data Is published for all nine elastic constants for certain
woods {3,4], and we first show the values of the constants Dy -D;, deduced from
those data, for the important cases of plates which are not precisely
quarter-cut, Specifically, we consider plates which depart from exact quartering
either by having tilted annual rings or by having tilted grain lines, but not
both. In Figures 1(a} and (b) we show the four elastic constants plotted as a
function of ring tilt angle (measured in the TR plane) and grainm tilt angle
(measured in the LT plane} respectively, using a set of nine elastic constants
taken from Table 2 of ref. (3], which we take to be a typical set of spruce
values. Because of the large spread of values of these constarts, a logarithmic
vercical scale is used in both cases. The values for zero angle are the same
in each case, and correspond to the ideal quarter-cut plate, with Dy in the L
direction and Dy in the R direction,

These graphs show the sensicivity of some of the plate constants to grain and
ring angles. Most important are the very strong variations of Dy and Dy with
ring angle - one reason why makers pay such careful atrention te ring angle
[5]. HMuch of the wood sold for instrument making is not precisely gquarter-cut,
and we see from Fig. 1(a), for example, that D3 can change by a factor of two
or so with a ring angle of only 10°.

A BRIEF SURVEY OF MEASUREMENT METHODS

We now examine the various methods of measuring the elastic and damping
constants of wood which are to be found in the ljiterature. These can be divided
into three broad categories, based respectively on static deformations,
low-frequency vibrations and ultrasonics.

Static tests

Scatic methods are perhaps the first te spring to mind for measuring elastic
constants. Afrer all, the textbeok definictions of Young's modulus, Poisson's
ratio and shear modulus are given in terms of the deformation of the material

Proc..O.A. Vo8 Part1 (1986) ' g9




Proceedings of The Institute of Acoustics

SPRUCE ELASTICITY AND MICROSTRUCTURE

in response to static stresses of various kinds. Thus static compression or
shear of suitably-shaped specimens could be used to make direct measurements of
the constants from their definiclons. MHowever, while this is true in principle,
in practice it is not easy to carry out such measurements on wood with

sufficient accuracy because the magni{tudes of the modull make the elastic
scrains very small,

This problem is exacerbated by the fact that in the case of wood, we need to
work with rather small specimens, & constraint which affects all measurement
methods, There are two reasons. First is the spatial inhomogeneity of the
material (heartwood and sapwood, and the multifarious growth anomalies that
wood is helr to). Second, and more serious, 1is cthe fact that the simple
orthotropic theory we are using ignores the curvature of the annual rings. To
cut samples for testing purposes in the T direction without significant problems
arising from curvature requires very small dimensicns (recall the extreme
sensitivity of the constants te ring angle demonstrated in Fig. 1{a)).

Onthe other hand, specimens cannot be oo small. We are using a concinuum
theory vhich i{gnores the ring structure of the wood. The conditions for this
to be a reascnable approximation are not easy to specify succinctly, but the

main requirement is cthat samples should not get so small that they have any
~ radial dimenmsion comparable to the ring spacing. Otherwise large fluctuations
in resuits are to be expected, depending on precisely how much spring wood
compared with summer wood is included. This constraint is again unavoidable,
for any method, and ctogether with the first one poses a serious dilemma
regarding sample sizes, for any measurement method.

A more useful form of static testing than simple compression or shear involves
bending or torsfon of rods or plates. For a given level of elastic strainm,
much larger measurable displacements are obtainable this way, with a
corresponding improvement in accuracy. Such methods have been used extensively
in the past. Hearmon [3] reviews several such approaches, and compares the
results wich those of other approaches.

For our purposes, we should note two serious difficulties with all static
measurements which make it not worth our while to pursue the methed in much
detail. TFirst, static tests cannot be used to give any of the damping
constants. Even if energy loss in the static test were measured, there is no
very pood reason te expect this to relate closely to the vibration damping.
The reason points up the second difffeulty with static tescs. It has been
extensively reported In the literature [e.g. 3,4,6,7] that any static test
invelving shear strains relative te the principal axes of the wood is likely to
exhibit creep. The deformation will continue to increase with time afcer the
load is applied, and the specimen will not in general recover its original
dimensions fully when che load {s removed. This is the reason for the familiar
permanent sagging or yilelding of wood under conditions of sustained locad. Ome
result of this {s that static measurements of shear modull tend to give
consistently lower values than do vibration tescs, the precise value depending
on the time taken te perform the measurement.

ou-fre gy vibratio .
The second category of measurement methods is the broadest of the three.
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“Low-frequency vibration tests” means low audlo frequencies, and includes the
loaded cantilever and torsion-bar vibrations discussed by Hearmon (3},
bending-strip vibration tests [e.g. 5], measurements on plates such as our own
{2], and so on. In all of these cases, the procedure is essentially the same. .
One or more normal modes of vibration of the wood sample, perhaps with some
added masses or constraints, are studied, to deduce the frequency, damping or Q
factor, and perhaps the mode shape. To be useful, such measurements must be
made on vibration modes which are well understood theoretically. One can then
relate the measured frequencies and Q-factors to the desired elastic and damping
constants of the material.

To determine the complete set of elastic and damping constants by studying
low-frequency vibration medes, one obviously needs to measure at least nine
different modes. For cross-checking one needs more. Ideally, one would like to
think of sample geometries suth that each constant 1s deduced directly from ona
measurement. In practice, however, this simplicity cannot be achiasved for all
the constants. In most cases, the frequency measured depends on a combination
of the elastic constants (and similarly the Q-factor depends on a combination
of the damping constants [8]). Omne then has to solve an "inverse preblen® to
deduce the separate constants from the measurements.

Certain commonly-used sample configurations avoid the difficulties of tricky
inverse problems to a considerable extent. The Young's moduli can be measured
directly (using strip bending tests or loaded cantilever tests, for example)
because one-dimensional thin-beam bending depends only en Young's medulus.
Similarly, the three shear modull can be deduced almost independencly from
torsional vibration tests. A rod of some uniform cross-section is cut parallel
to one of cthe principal axes of the material (subject of course te the
sample-size constraints discussed above). Ome end is clamped in some suitable
way, and a mass having a large moment of inertia is attached to the other end.
The low frequency torsional escillations of this system are then observed. The
frequencles are governed by a combination of two of the shear modull alone (in
two planes, each perpendicular to the rod’s cross-section). The precise
combination depends on the cross-sectional shape of the rod.

However, for our full problem of determining all the constants, twoe difficulties
are still evident. First, bending and torsion tests about principal axes still
leave us with three of the nine constants to be measured. These are, for
example, three of the Polsson’s ratics. We have already noted that static
methods are not desirable for the elastic constants, and are unlikely to be
pessible for the damping constants. Second, {t would be better for experimental
efficlency and economy of sample material 1f some way could be found to measure
all the constants from a minimal number of separate samples, rather than having
to cut a range of different samples for measurements of the different constants.
As noted above, we also want in particular to avoid having to cut any shapes
vhich are large in the T direction. For axample, conventional strip-tests for
Ep would be error-prone for this reason.

It would perhaps be useful to pause here and summarise cur "shopping list® of
features which the elusive ideal measurement method should offer. It should
involve the cutting of a few - say no more than two or three - specimens of
wood.  These will have all dimensions small compared with the radius of
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curvature of the annual rings, buc large compared with the ring spacing; In
other words of the order of a centimetre or two. The shapes should not present
great ctechnical difficulties in the cutting precess (such as, for example, a
requirement for exact spheres or hollow shells would poaa). The specimens
would then be used In such a way that they can be tuned to produce low vibration
modes at a wide range of audlo frequencies, invelving all nine of the independent
elastic constants in such a way that, at each frequency separately, we can
solve the Inverse problem to give good accuracy on all the elastic and damping
constants. These should, of course, be in agreement with results obtained by
other reputable methods such as those discussed above. All of this makes a
tall order, but it is ds waell to have the ideal clearly in mind when assessing
practical possibilicies.

None of the low-frequency resonance approachss kmnown te us from the existing
literature come close to satisfying this demanding sheopping list. We now offer
some speculations about a method which might possibly come close to doing so.
These are untested ldeas, and are intended more as a spur to further thought
and experiment than a proven recipe for solving the problem. The hardest part
of the problem a5 stated Is perhaps the requirement for tunability of the
frequencies of resondnces over a significant part of the audio range without
violating the stringent condicions on sample size. One solution to this might
be make measurements off resonange, using forced vibration. A machine is
apparently made by DuPont to do this for simple bar tests, but it is well beyond
the  means of the wviolin-making community! Resonance methods do not require
high technology, and for such a method the only simple but practical way te
achleve tunability seems to involve adding masses to the wooden specimen. The
simplest configuration Involves a cubic or rectangular block of wood with blocks
c¢f mecal firmly attached to a palr of opposite faces - in other words a
metal/wood/metal sandwich. Varying the masses of the metal blocks (which need
to-be effectively rigid in comparison with the wood for a tractable theory)
could allow the lowest few resonances of the composite body to be tuned over a
useful range.

These lov resonances will fall inte four distinct types - compressional modes,
two orientations of shear modes, and twisting modes. Thus measurements on one
configuration will yield information about several combinations of the elastic
and damping constants of the solid wood. The hope would be that by using "meat”
for the sandwich cut in more than one orientation relative to the prineipal
axes of the cree, one might be able t¢ deduce all the constants by solving the
eppropriate inverse problem, In terms of economy of specimens, cubes of wood
have a lot to recommend them. Provided the metal blocks could be fixed in a
wvay wvhich can be undone without damaging the wood, a single cube could be used
in all three orlentatlons with the same set of metal weights., There is thus a
faint possibility that one cube in principal axes might be sufficient te yield
the full set of constants, elastic and damping. A stronger possibilicy 1s that
two cubes, one principal and one skew, could do the job. Some careful thought
about both theory and experimental technique is needed before it becomes clear
whether this hope is justified. Experimentation with computer simulations is
needed to assess the wvarlous possibilicies, and indeed to evaluate the
feasibility of che suggested method as a whole.

Ultragonics
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The use of ultrasonic tescing to determine the elastic constants of wood is a
relacively recent development - see e.g. [9,10]. The method is simple in
concept, and shares some advantagas with the speculative method outlined above, -
Small cubes of wood are cut at various orientations te the principal axes, and
transmitting and receiving transducers are attached to a pafr of opposite faces.

A short pulse of high-frequency. vibration is then transmitted through the
sample, and its travel time measured,

By varying the type of transducers used, both compressional and shear wave
speeds can be measured om the specimen. Provided the wavelength is short
compared with the sample dimensions, the waves can be assumed to be plane,
With that assumption, the measured wave speed can be used to deduce an
appropriate stiffness of the material. If enough orientations are measured to
give the complete éx6 stiffness matrix (see Heatmon [3,4]), this can ba inverted

te give cthe compliance matrix [op, ¢it.] from which the Young's modulil etc. may-
be deduced.

The method Jjust described s attractive in many ways, end is the natural
extension to vood of a method which works extremely well for homogenecus
materials like metals. However, there are twe likely drawbacks in applying it
to wood., First, in common with static tests deseribed earlier, it cannot be
used to measure damping constants since it involves frequencies well outside
the audio range. It would be surprising if the damping "comstants™ were in
fact constant over this wide frequency range,

The second problem relates to the measurement of elastic constants, and is a
new manifestation of the sample-size constraints mentioned earlier. It is most
clearly illustrated for the case of compressional waves travelling in the R
direction, perpendicular to the annual Tings. We are using & continuum theory
which ignores the ring structure of wood, but if one looks in more detail, of
course the elastic behaviour and density of wood varies roughly pariodically
with radial distance, because of the rings. The continuum theory can be used
safely only if the wavelength is long compared with the ring spacing.

To be safe, the wavelength should be at least four times the ring spacing.
Published data [9,11] give typical values of the sound speed in the R direction
in spruce of 1400m/s. Thus the highest frequency one could use reliably is
about 3I50kHz for fairly close rings of lmm spacing, dropping to about 100kHz
for ring spacing of 3mm common in spruce used for celle top plates. This is on
the low side for conventional ultrasoenic testing, where other problems
(associated with longer pulse lengths) are beginning to appear which affect the
measurement accuracy, Bucur does present some results measured at 100kHz (9],
which perhaps represenc the most promising line to follow.

HICROSTRUCTURE MODELLING.

We have now surveyed briefly the range of methods available for direct
measurement of the elastic and damping constants of wood. . However, direct
measurement is not the only way of gaining useful insight into the problem, and
in this final section we look at what may prove to be a powerful alternative
approach. The theory we have been using up to now deduces the existence of nine
independent elastic constants from very general arguments sbout the mirrer
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symmecry of the materisl in thres murually orthogonal planes [4]. However,
these constants are "independent® only to the extent that we use no further
knowledge of the structure of wood in building our theory.

1f we understood the microscopic mechanics of wood bettexr, we might find useful
inter-relations between the nine constants. This could have twe important
benefits. First, it would reduce the mnumber of degrees of freedom in the
problem, so that fewer measurements would suffice. In view of the difficulrty
of finding reliable ways of measuring all the constents, this would obviously
be wery useful, However, it would require the inter-relations te be known
rather accurately. : '

The second advantage does mot rely so much on accuracy. Even approximate
inter-relations backed by physical understanding can provide some wvaluable
prejudices about the results of direct measurements. Since we have repeatedly
stressed the difffculties of such measurements, any well-founded expeccations
ve may have about the relative magnitudes of the various constants are likely
to be valuable 1in thelping to detect errors in experiments or ctheir
interpretation.

The microscopic structure of wood 1s described in many standard texts, for
exanple Bodig and Jayne [6]. For our present purposes it is fortunate that we
are particularly interested in Norway spruce, since this has a rather simple
structure {(at least in a first approximatiom to what appears under the
microscope). It conslsts of hollew, rather thin-walled cells which are very
long compared with thelr cross-sectionsl dimensions. Most of these cells are
aligned parallel to the axis of the tree - these are the grain fibres, and are
known botanically as tracheids. A small proportion of the cells form medullary
rays. For the present purpose ray cells are similar to the main fibres, except
that the ray cells are aligned in the radial direction. HNo cells run in the
transverse direction. Tha walls of all these cells have anisotropic mechanical
propetties, because they contain "microfibrils” whese orfentatlons wvary between
cells of different types.

as long ago as 1928, this structure suggested a simple theoretical model to
A. T. Price, who analysed it in a paper [7] which is highly significant for our
purposes. He ignored the finite .length of the cells, and considered them as
indefinitely long tubes of constant cross-section, His model thus consisted of
close-packed tubes aligned axially, interpenetrated by a small proportion of
similar (but not necessarily mechanically identical) tubes running radially, to
model the medullary rays. He analyses quantitatively the mechanics of the
close-packed axial tubes, and comments qualitatively on the effect of the rays.
This second stage of the calculation was later made more quantitative by Barkas
{12}). Price devoted the rest of his paper to consideration of the effect of
the radial medulation in cell size constituting the annual rings. We will not
review all his work {m detall, but we will sketch the clear physical
understanding he gives of the ralative magnitudes of the elastic constants. It
seems that this simple model goes a long way toward explaining the measured
values, snd thus appears to capturs some of the essential properties of wood.

A qualitative explanation of the apisotropy of Young’'s modulus along and across
the grain is the most immediate deduction from this model. For stretching
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along the grain, the individual cubes must be stretched. For sctretching acress
the grain, on the other hand, the tube walls need only hkené, approximately
inextensionally, giving a much lower modulus. Price suggests that the smaller
degree of anisotropy betwean the two cross-grain directions (T and R) is
explained by the medullary rays. Ep is always smaller than Ep, usually by
about a factor of twe. The idea 1s that Ep represents just cell-wall bending
8s just described, whereas Ep involves extra stiffness from stretching of cthe
small proportion of ray cells. '

To make these ideas quantitative, Price analysed the simplest case of ctube
geometry. He imagined the tubes to have circular cross-gections, and used
rasults from Love [13] for Inextensional (bending) deformacion of the
eross-sectional shape. This model, combined with gecmetric information about
cell configuration from microscople examinatlon, gave first estimates of the
ratico E;:Ep which were rather larger than those observed (7, p9], but close
enough to suggest that this theory was indeed modelling the dominant mechanism
for L-T anisotropy. Effects of finite wall thickness and departures of geometry
from that assumed could plausibly be believed to account for the deviation from
observation.

In a similar way, the "tube model® can give Information about the .relatlive
magnitude of the other elastic constants. Interesting light is shed on the
method by recent work of Gibsen et al. ([1l4]. They examined a family of
two-dimensional cellular materials formed from various kinds of hexagons, and
they give formulae for ell four in-plane elastic constants. By using a
different geometry from Price, they reveal which features are special co
ecircular cylinders and which are more general.

As a final note on microstructure modelling, we draw attentlon to the interesting
paper on balsa wood by Easterling at al. [153]. They use arguments similar to
those of Price, and combine them with more up-to-date direct measurements of
cell-wall elastic properties [16] to preduce (among other things) predictions
of the three principal Young's modul{ as functions of density of the woed.
Using thelr own measurements on balsa specimens having a wide range of densitles
together with published measurdments for other woods, they plot an interesting
graph showing that the predicted correlations and values are encouragingly well
supported by measurements ([15), Fig. 10). There 1is surely much more to be
learnt about wood properties by developing this line.of thinking.
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Figure 1. The four elastic constants. Dy to B, for a flat plate of spruce,
calculated from data in ref. [(3]). In (a), the L axis (the ‘grain') lies in the
plate, while the angle (measured in the TR plane) of the annual rings varies
linearly from zero (the ideal quarter-cut plate) to 90° {plate in the LT plane).
In (b}, the R axis lies in the plate, while the grain angle (measured in the LT
plane) is varigd. GPa
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