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INFRODUCTION

For~ many problems in musical-instrument acoustics, a good understanding of the
elastic and damping behaviour of wood, with and without surface treatments, is
needed, As has been explained elsewhere [l,2], the simplest model of wood (as
an orthotropic solid) requires measurement of nine elastic and nine damping
constants. This is a difficult task, and some approaches to it are reviewed
here.

As a starting point, we consider the simplest problem of interest. that of a
flat plate cut from the tree in such a way as to contain one of the principal
axes (called L(ongitudinal), R(adial) and T(ransverse)). Such a plate needs
only four elastic (and four damping) constants, for which we shall follow the
notational conventions of refs. [1,2] and call the elastic constants D1, Dz, D3
and DA. Some data is published for all nine elastic constants for certain
woods [3,4], and we first show the Values of the constants Dl-D‘ deduced from
those data. for the important cases of plates which are not precisely
quarter-cut. Specifically, we consider plates which depart from exact quartering
e;‘ the; by having tilted annual rings 9; by having tilted grain lines, but not
both, In Figures 1(a) and (b) we show the four elastic constants plotted as a
function of ring tilt angle (measured in the IR plane) and grain tilt angle
(measured in the LT plane)_respeotively, using a set of nine elastic constants
taken from Table 2 of ref. [3], which we take to he a typical set of spruce
values. Because of the large spread of Values of these constants, a logarithmic
vertical scale is used in both cases. The values for zero angle are the same
in each case. and correspond to the ideal quarter-cut plate, with D1 in the L
direction and 03 in the R direction.

These graphs show the sensitivity of some of the plate constants to grain and
ring angles. Host important are the very strong variations of D2 and D3 with
ring angle - one reason why makers pay such careful attention to ring angle
[5]. Much of the wood sold for instrument making is not precisely quarter-cut,
and we see from Fig. 1(a), for example, that D3 can change by a factor of two
or so with a ring angle of only 10'.

A BRIEF SURVEY OF MEASUREMENT HETHODS

We now examine the various methods of measuring the elastic and damping
constants of wood which are to be found in the literature. These can be divided
into three broad categories, based respectively on static deformations.
low-frequency vibrations and ultrasonics.

§tatic tests

Static methods are perhaps the first to spring to mind for measuring elastic
constants. After all, the textbook definitions of Young‘s modulus, Poisson's
ratio and shear modulus are given in terms of the deformation of the material
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in response to static stresses of various kinds. Thus static compression or
shear of suitably-shaped specimens could be used to make direct measurements of
the constants from their definitions. However, while this is true in principle.
in practice it is not easy to carry out such measurements on wood with
sufficient accuracy because the magnitudes of the moduli make the elastic
strains very small.

This problem is exacerbated by the fact that in the case of wood. we need to
work with rather small specimens. a constraint 'which affects all measurement
methods. There are two reasons. First is the spatial inhomogeneity of the
material (heartwood and sapwood. and the multifarious growth anomalies that
wood is heir to). Second, and more serious, is the fact that the simple
orthotropic theory we are using ignores the curvature of the annual rings. To
cut samples for testing purposes in the 1: direction without significant problems
arising from curvature requires very small dimensions (recall the extreme
sensitivity of the constants to ring angle demonstrated in Fig. 1(a)).

On’the other hand. specimens cannot be no small. We are using a continuum
theory which ignores the ring structure of the wood. The conditions for this
to be a reasonable approximation are not easy to specify succinctly. but the
main requirement is that samples should not get so small that they have any
radial dimension comparable to the ring spacing. Otherwise large fluctuations
in results are to be expected, depending on precisely how much spring wood
compared with summer wood is included. This constraint is again unavoidable.
for any method. and together with the first one poses a serious dilemma
regarding sample sizes, for any measurement method.

A more useful form of static testing than simple compression or shear involves
bending or torsion of rods or plates. For a giVen level of elastic strain.
much larger measurable displacements are obtainable this way. with a
corresponding improvement in accuracy. Such methods have been used extensively
in the past. Hearmon [3] reviews several. such approaches. and compares the
results with those of other approaches.

For our purposes, we should note two serious difficulties with all static
measurements which make it not worth our while to pursue the method in much
detail. First, static tests cannot be used to give any of the damping
constants. Even if energy loss in the static test were measured, there is no
very good reason to expect this to relate closely to the vibration damping.
The reason points up the second difficulty with static tests. It has been
extensively reported in the literature [c.g. 3.6.6.7] that any static test
involving shear strains relative to the principal axes of the wood is likely to
exhibit creep. The deformation will continue to increaSe with time after the
load is applied, and the specimen will not in general recover its original
dimensions fully when the load is removed. This is the reason for the familiar
permanent sagging or yielding of wood under conditions of sustained load. One
result of this is that static measurements of shear moduli tend to give
consistently lower values than do vibration tests. the precise value depending
on the time taken to perform the measurement.

ow- e c vib t o _
The second category of measurement-methods is the broadest of the three.
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"Low-frequency vibration tests' means low audio frequencies, and includes the
loaded cantilever and torsion-bar vibrations discussed by Hearmon [3}.
bending-strip vibration tests [e.g. 5], measurements on plates such as our own
[2]. and so on. In all of these cases. the procedure is essentially the same. .
One or more normal modes of vibration of the wood sample. perhaps with some
added masses or constraints. are studied. to deduce the frequency. damping or Q
factor. and perhaps the mode shape. To be useful, such measurements must be
made on vibration modes which are well understood theoretically. One can then
relate the measured frequencies and Q-factors to the desired elastic and damping
constants of the material.

To determine the complete set of elastic and damping constants by studying
low-frequency vibration modes, one obviously needs to measure at least nine
different modes. For cross-checking one needs more. Ideally. one would like to
think of sample geometries such that each constant is deduced directly from one
measurement. In practice. however, this simplicity cannot be achieved for all
the constants. In most cases, the frequency measured depends on a combination
of the elastic constants_(and similarly the Q-factor depends on a combination
of the damping constants [8]). One then has to solve an 'inverse problem“ to
deduce the separate constants from the measurements.

Certain commonly-used sample configurations avoid the difficulties of tricky
inverse problems to a considerable extent. The Young's moduli can be measured
directly (using strip bending tests or loaded cantilever tests. for example)
because one-dimensional thin-beam bending depends only on Young's modulus.
Similarly. the three shear moduli can be deduced almost independently from
torsional vibration tests. A rod of some uniform cross-section is cut parallel
to one of the principal axes of the material (subject of course to the
sample-size constraints discussed above). One and is clamped in some suitable
way. and a mass having a large moment of inertia is attached to the'other end.
The low frequency torsional oscillations of this system are then obsarVed. The
frequencies are governed by a combination of two of the shear moduli,alone (in
two planes, each perpendicular to the rod's cross-section). The precise
combination depends on the cross-sectional shape of the rod.

However. for our full problem of determining all the constants. two difficulties
are still evident. First. bending and torsion tests about principal axes still
leave us with three of the nine constants to be measured. These are. for
example. three of the Poisson's ratios. We have already noted that static
methods are not desirable for the elastic constants. and are unlikely to be
possible for the damping constants. Second, it would be better for experimental
efficiency and economy of sample material if some way could be found to measure
all the constants from a minimal number of separate samples. rather than having
to cut a range of different samples for measurements of the different constants.
As noted aboVe, we also want inparticular to avoid having to cut any shapes
which are large in the 1‘ direction. for example, conventional strip-tests for
a: would be error-prone for this reason. '

It would perhaps be useful to pause here and summarise our "shopping list' of
features which the elusive ideal measurement method should offer. It should
involve the cutting of a few - say no more than two or three - specimens of
wood. These will have all dimensions small compared with the radius of

Prot.l.0.A. Vols For“ (1986) 101  



  

  
  

     

  
  

    

 

  

  

   
    

 

      

      

  
  
    

  

        

        

    

  
  
  
  

        

   

   

Proceedings of The Institute of Acoustics

SPRUCE ELASTICITY AND HICROSTRUCTURE

curvature of the annual rings. but large compared with the ring spacing; in
other words of the order of a centimetre or two. The shapes should not present
great technical difficulties in the cutting process (such as. for example, a
requirement for exact spheres or hollow shells would pose). The specimens
would then be used in such a way that they can be tuned to produce low vibration
modes at -a wide range of audio frequencies. involving all nine of the independent
elastic constants in such a way that. at each frequency separately, we can
solve the inverse problem to give good accuracy on all the elastic and damping
constants. These should. of course, be in agreement with results obtained by
other reputable methods such as those discussed above. All of this makes a
tall order, but it is a's wall to have the ideal clearly in mind when assessing
practical possibilities.

None of the low-frequency resonance approaches known to us from the existing
literature come close to satisfying this demanding shopping list. We now offer
some speculations about a method which might possibly come close to doing so.
These are untested ideas. and are intended more as a spur to further thought
and experiment than a proven recipe for solving the problem. The hardest part
of the problem as stated is perhaps the requirement for tunability of the
frequencies of resonances over a significant part of the audio range without
violating the stringent conditions on sample size. One solution to this might
be make measurements egg resonance. using forced vibration. A machine is
apparently made by DuPont to do this for simple bar tests, but it is well beyond
the-means of the violin-making community! Resonance methods do not require
high technology, and for such a method the only simple but practical way to
achieve tunability seems to involve adding masses to the wooden specimen. The
simplest configuration involves a cubic or rectangular block of wood withblocks
of metal firmly attached to a pair' of opposite faces - in other words a
motal/wood/metel sandwich. Varying the masses of the metal blocks (which need
“be effectively rigid in comparison with the wood for a tractable theory)
could allow the lowest few resonances of the composite body to be tuned over a
useful range.

 

  
These low resonances will fall into four distinct types - compressional modes.
two orientations of shear modes. and twisting modes. Thus measurements on one
configuration will yield information about several combinations of the elastic
and damping constants of the solid wood. The hope would be that by using "meat"
for the sandwich cut in more than one orientation relative to the principal
axes of the tree. one might be able to deduce all the constants by solving the
appropriate inverse problem. In terms of economy of specimens, cubes of wood
have a lot to recommend them. Provided the metal blocks could be fixed in a
way which can be undone without damaging the wood. asingle cube could be used
in all three orientations with the same set of metal weights. There is thus a
faint possibility that one cube in principal axos might be sufficient to yield
the full set of constants. elastic and damping. A stronger possibility is that
two cubes, one principal and one skew. could do the job. Some careful thought
about both theory and experimental technique is needed before it becomes clear
whether this hope is justified. Experimentation with computer simulations is
needed to assess the various possibilities. and indeed to evaluate the
feasibility of the suggested methodas a whole.

ultrasonic:
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The use of ultrasonic testing to determine the elastic constants of wood is a
relatively recent development - see a.g. [9.10]. The method is simple in
concept, and shares some advantages with the speculative method outlined above.
Small cubes of wood are cut at various orientations to the principal axes. and
transmitting and receiving transducers are attached to a pair of opposite faces.
A short pulse of high-frequency. vibration is then transmitted through the
sample, and its travel time measured.

By varying the type of transducers used. bo'th compressional and shear wave

speeds can be measured on the specimen. Provided the wavelength is short

compared with the sample dimensions. the waves can be assumed to be plane.

With that assumption. the measured wave speed can be used to deduce an

appropriate stiffness of the material. If enough orientations are measured to
give the complete 6x6 stiffness matrix (see Hearmon [3,“). this can he inverted

to give the compliance matrix [W] from which the Young‘s moduli etc: may

be deduced.

The method just described is attractive in many ways. andis the natural

extension to wood of a method which works extremely well for homogeneous
materials like metals. However. there are two likely drawbacks in applying it
to wood. First, in common with static tests described earlier. it cannot be
used to measure damping constants since it involves frequencies well outside

the audio range. It would be surprising if the damping "constants" were in

fact constant over this wide frequency range.

The second problem relates to the measurement of elastic constants. and is a
new manifestation of the sample-size constraintsmentioned earlier. It is most

clearly illustrated for the case of compressional waves travelling in the R
direction, perpendicular to the annual rings. He are using a continuum theory
which ignores the ring structure of wood. but if one looks in more'detail, of
course the elastic behaviour and density of wood varies roughly periodically
with radial distance, because of the rings. The continuum theory can be used
safely only if the wavelength is long compared with the ring spacing.

To be safe. the wavelength should be at least four times the ring spacing.
Published date [9,ll1 give typical Values of the sound speed in the R direction

in spruce of lIAOOm/s. Thus the highest frequency one could use reliably is

about 350M: for fairly close rings of 1mm spacing. dropping to about 100k“:
for ring spacing of 3mm common in spruce used for cello top plates. This is on
the low side for conventional ultrasonic testing. where other problems

(associated with longer pulse lengths) are beginning to appear which affect the

measurement accuracy. Bucur does present some results measured at lOOkHz [9].

which perhaps represent the most promising line to follow.

HICROSTRUCTURE MODELLING .

We have new surveyed briefly the range of methods available for direct
measurement of the elastic and damping constants of wood. -However, direct

measurement is not the only way of gaining useful insight into the problem, and

in this final section we look at what may prove to be a powerful alternative

approach The theory we have been using up to now deduces the existence of nine

independent elastic constants from Very general arguments about the mirror
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symmetry of the material in three mutually orthogonal planes [A]. However,

these constants are 'independent' only to- the extent that we use no further

knowledge of the structure of wood in building our theory.

If we understood the microscopic mechanics of wood better. we might find useful

inter-relations between the nine constants. This could have two important

benefits. First. it would reduce the number of degrees of freedom in the

problem. so that fewer measurements would suffice. in view of the difficulty

of finding reliable ways ofmeasuring all the constants. this would obviously

be very useful. However. it would require the inter-relations to be known

rather accurately. '

The second advantage does not rely so much on accuracy. Even approximate

inter-relations backed by physical understanding can provide some valuable

prejudices about the results of direct measurements. Since we have repeatedly

stressed the difficulties of such measurements. any well-founded expectations

we may have about the relative magnitudes of the various constants are likely

to be valuable in helping to detect errors in experiments or their

interpretation.

The microscopic structure of wood is described in many standard texts. for

example Bodig and Jayne [6], For our present purposes it is fortunate that we

are particularly interested in Norway spruce. since this has a rather simple

structure (at least in a first approximation to what appears under the

microscope). It consists of hollow, rather thin-walled calls which are very

long compared with their cross-sectional dimensions. Host of these cells are

aligned parallel to the axis of the tree - these are the grain fibres. and are

known botanically as tracheids. A small proportion of the cells form medullary

rays. For the present purpose ray cells are similar to the main fibres. except

that the ray cells are aligned in the radial direction. No‘cells run in the

transverse direction. The walls of all these cells havs anisotropic mechanical

properties. because they contain 'microfibrils" whose orientations vary between

cells of different types.

As long ago as 1928. this structure suggested a simple theoretical model to

A. T. Price. who analysed it in a paper [7] which is highly significant for our

purposes. He ignored the finite .length of the cells, and considered them as

indefinitely long tubes of constant cross-section. His model thus consisted of

close-packed tubes aligned axially, interpenetrated by a small proportion of

similar (but not necassarily mechanically identical) tubes running radially. to

model the medullary rays. He analyses quantitatively the mechanics of the

close-packed axial tubes. and cements qualitatively on the effect of the rays.

This second stage of the calculation was later made more quantitative by Barkas

[12]. Price devoted the rest of his paper to consideration of the effect of

the radial modulation in cell size constituting the annual rings. We will not

review all his work in detail. but we will sketch the clear physical

understanding he gives of the relative magnitudes of the elastic constants. It

seems that this simple model goes a long way toward explaining the measured

values. and thus appears to capture some of the essential properties of wood.

A qualitative explanation of the anisotropy of Young's modulus along and across

the grain is the most immediate deduction from this model. For stretching
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along the grain. the individual tubes must be stretched. For stretching across

the grain. on the other hand. the tube walls need only Lend. approximately

inextensionally. givinga much lower modulus. Price suggests that the smaller
degree of anisotropy between the two cross-grain directions (1' and R) is
explained by the medullary rays. B1- is always smaller than ER, usually by

about a factor of two. The idea is that Dr represents just tell-wall bending
as just described. whereas in involves extra stiffness from stretching of the

small proportion of ray cells. '

To make these ideas quantitative, Price analysed the simplest case of tube

geometry. lie imagined the tubes to have circular cross—sections, and used

results from Love [13] for inextensional (bending) deformation of the

cross-sectional shape. This model. combined with geometric intonation about

cell configuration from microscopic examination. gave first estimate: of the
ratio BEE-r which were rather larger than those observed [7, p9], but close
enough to suggest that this theory was indeed modelling the dominant mechanism

for L-1‘ anisotropy. Effects of finite wall thickness and departures of geometry
from that assumed could plausibly be believed to account for the deviation from
observation.

In a similar way. the “tube model' can give information about the relative

magnitude of the other elastic constants. Interesting light is shed on the
method by recent work of Gibson et e1. (1“. They examined a family of
twovdimenslonal cellular materials formed from various kinds of hexagons, and
they give formulae for all four in-plane elastic constants. By using a
different geometry from Price, they reveal which features are special to
circular cylinders and which are more general.

As a final note on mitrostructure modelling, we draw attention to the interesting
paper on balsa wood by Easterling et a1. [15]. They use argumenta‘ similar to

those of Price, and combine them with more up-to-date direct measurements of

cell-wall elastic properties [16] to produce (among other things) predictions

of the three principal Young's moduli as functions of density of the wood.
Using their own measurements on balsa specimens having a wide range of densities
together with published measurements for other woods, they plot an interesting
graph showing that the predicted correlations and values are encouragingly well

supported by measurements ([15]. Fig. 10). There is surely much more to be

learnt about wood properties by developing this line .of thinking,
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Figure l. The four elastic constants D1 to 1),. for a flat plate of spruce,
calculated from data in ref. [3]. In (a). the L axis (the 'grain') lies in the
plate, while the. angle (measured in the TR plane) of the annual rings varies
linearly from zero (the ideal quarter-cut plate) t0 90' (plate in the LT plane).
In (In). the R axis lies in the plate. while the grain angle (measured in the LT
plane) is varied.
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