
Proceedings of the Institute of Acoustics 

Vol. 46. Pt. 2. 2024 

A MACHINE LEARNING APPROACH TO NOISE 
SUPPRESSION AND TIMBRE ENHANCEMENT OF EARLY 
20TH CENTURY MUSIC 
 
Jiaxi You Department of EEE, The University of Manchester, Manchester, UK 
Patrick Gaydeckii Department of EEE, The University of Manchester, Manchester, UK 
Claire Mitchell  Division of Neuroscience & Experimental Psychology, The University of 

Manchester, Manchester, UK 
 

 

1 INTRODUCTION  

This research focuses on the restoration of historical recordings produced before 1925, which is often 
termed the “Acoustic Era” [1]. The recording process relied solely on mechanical devices without 
microphones or electrical amplifiers. As shown in Figure 1, the horn was the primary device for 
capturing sound [2]. The wide end of the horn faced the instruments and performers, while the narrow 
end was connected to a diaphragm. The sound waves were gathered and funnelled towards the thin 
diaphragm and the energy from these sound waves caused the diaphragm to vibrate in response to 
the acoustic pressure change. A stylus was attached to the diaphragm, which is a pointed tool that 
translates the vibrations of the diaphragm into physical motion [3]. The stylus moved correspondingly 
while the diaphragm vibrated, etching the sound waves into a blank, rotating wax or shellac medium. 

 
Figure 1: An American Studio of Victor, an American Subsidiary of Gramophone Co. [2] 

 
Achieving an appropriate volume and balance between different sound sources was challenging, and 
the mechanical nature of the process imposed significant limitations on both the dynamic range and 
frequency response. This often resulted in recordings that lacked fidelity and clarity, with the 
frequency range typically restricted to between about 250 Hz and 2500 Hz. Additionally, the recording 
studios of the early twentieth century were far from ideal environments for producing high-quality 
sound, leading to recordings that were marred by various forms of ambient noise. With the aim of 
reviving the original sound from that period, this research restores digitized old recordings in two 
phases: noise removal and bandwidth enhancement.  
 
During the Acoustic Era, several companies emerged as major players in the industry, playing crucial 
roles in the development and distribution of recorded music [2-5]. These included the Columbia 
Phonograph Company, founded in 1887; Edison Records, founded in 1888; the Berliner Gramophone 
Company, founded in 1895; and the Victor Talking Machine Company, founded in 1901. Most of the 
recording data used in this research originates from these four companies. This paper focuses entirely 
on solo piano recordings.  
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2 AUDIO DENOISING 

2.1 Proposed Model Architecture 

Inspired by the original U-Net convolutional neural network structure, initially developed for medical 
image segmentation [6], the audio denoising tasks can be approached as a segmentation problem: 
segmenting/separating the denoised audio signal from the noise. While U-Net has been successfully 
applied to denoising tasks [7-10], most studies focus on speech processing, which lacks the complex 
harmonic structures of music. Some research has addressed music denoising or source separation 
[11], but often with datasets featuring less dominant noise compared to those from the Acoustic Era.  
 
The architecture of U-Net is characterised by a symmetric U-shaped structure, which consists of a 
contracting path and an expansive path, as shown in Figure 2. Similar to a typical CNN, the 
contracting path involves repeated application of convolutional and max-pooling layers to capture 
context and reduce spatial dimensions. The expansive path involves upsampling and convolutional 
layers to reconstruct the spatial dimensions and achieve precise localisation. Skip connections are 
used between corresponding layers of the contracting and expansive paths to combine high-
resolution features from the contracting path with the upsampled output, enhancing the network’s 
accuracy.  

 
Figure 2: The Proposed Double Input U-Net Structure 

Downsampling 

This research employs representations from both the spectral domain and temporal domains for 
better denoising performance with fewer artefacts. Initially, the raw waveform is processed through 
encoder blockers for early feature extraction and downsampling. This preprocessing ensures that the 
waveform representations are dimensionally aligned with the spectral representations. The two 
representations are then passed to the same encoder, serving as two channels within the same U-
Net structure. The approach provides the network with comprehensive information about the audio 
signal, enabling the model to learn the relationship between the spectral and the temporal domains.  
 
Each waveform encoder block comprises a one-dimensional convolutional layer for feature extraction, 
an activation layer to introduce one-linearity to the model, and a max pooling layer to halve the sample 
size. Initially, the waveform input tensor has a shape of (32767, 1) and after passing through eight 

feature extraction blocks, the feature tensor reshapes to (256, 256). This tensor is combined with the 

spectrogram input to create a two-channel input, (256, 256, 2), for further feature extraction. Each 
blue encoder block in Figure 2 consists of two 2D convolutional layers, two activation layers, and a 
max pooling with a pool size of (2, 2). The encoders progressively reduce the data dimensions while 

increasing the feature depth. Ultimately, the bottleneck layer has a shape of (8, 8, 512), representing 
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the most compact and abstracted form of the input audio data. This layer serves as the bridge 
between the encoder and the decoder. 

 
2.1.1 Channel-Attention 

Inspired by the channel-attention for speech enhancement of multichannel recordings [12], a channel-
attention mask is employed at the bottleneck layer to improve feature representation by emphasising 
the most important channels of the compact audio data. As illustrated in Figure 3, it yields a refined 
output tensor that highlights the crucial channels and enhances the overall model performance.  

 
Figure 3: Channel Attention at Bottleneck 

 

2.1.2 Upsampling 

Symmetrically upsampling consists of six two-channel decoders and eight temporal signal decoders 
to expand the compact tensor back to (256, 256) spectrogram output and (32767, 1) waveform output. 
The decoders of both stages involve nearest neighbour upsampling, concatenation, convolution and 
activation; the only difference is that a self-attention mechanism is applied to the two-channel 
decoders to enhance important spatial locations, as shown in Figure 4. In U-Net architecture, the 
output from the upsampling is concatenated with corresponding feature maps from the downsampling 
path to integrate high-resolution spatial information with deeper feature information. Before 
concatenating, the self-attention gate facilitates better integration of features from different stages of 
the network, thus improving the quality of the upsampled features.  

 
Figure 4: Self-Attention Mechanism for the Two-Channel Upsampling 

 

2.2 Data Preparation 

For a fully-supervised model, pairing every old recording with a high-fidelity, noise-free modern 
recording is not feasible. Instead, noise is artificially added to model recordings. Considering the 

Input Tensor
Attention 

Map

Output Tensor

Input Mask

Reshape

Transpose
Softmax

Activation

Matrix 
Multiplication

Flatten

Convolution 
Normalisation

Input for
Concatenation

KeyConvolution 
Normalisation

Upsampled
Input

Activation 
Convolution 

Activation

Attention 
Gate

Element-Wise
Multiply

Query

Output to be Concatenated



Proceedings of the Institute of Acoustics 
 
 

Vol. 46. Pt. 2. 2024 
 

 

bandwidth limitations of historical recordings and computational efficiency, the training dataset uses 
a sampling rate of 11025 𝐻𝑧, which sufficiently captures signals more than 25000 𝐻𝑧 [2]. The target 
noisy audio pieces, 𝑌, can be viewed as a mixture of the clean, narrow bandwidth signal, 𝑋, and the 

noise, 𝑁: 

𝑌 = 𝑋 +  𝛼 ∗ 𝑁                                                         (1) 
Where α is a signal-to-ratio (SNR) scaling factor, with a value between 0.7 and 1.2. To ensure the 
quality of the training database, which is crucial to the model's performance, the dataset includes 
noise excerpts that represent a range of degradations. A large collection of digitised gramophone 
records and noise-free music audio are publicly accessible in the Internet Archive [13]. The noise 
database includes white noise, ambient noise from the recording environment, low-frequency rumble 
from the turntable, and clicks and thumps from irregularities in the storage medium, which is sourced 
from historical recordings in noise-only segments to comprehensively cover the characteristics and 
types of noise of the era. In addition to the clear piano pieces, recordings featuring individual keynotes 
have also been manually collected. This approach aims to provide the model with a better 
understanding of the piano's harmonic structure. The dataset comprises 165 minutes of noise from 
old recordings, approximately 4.2 hours of high-quality piano audio and 12.3 hours of noisy pieces 

generated with 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1).   
 

2.3 Training 

The training dataset consists of 15,000 frames, amounting to 12.3 hours. From this, 10% is reserved 

for validation. The model is trained using the Adam optimiser with a learning rate of 0.0001. The Huber 
loss function is employed as it provides a balance between Mean Absolute Error (MAE) and Mean 
Squared Error (MSE). The training is conducted with a batch size of 10 and over 100 epochs. The 

entire training process required approximately 6 hours, utilizing 4.5 𝐺𝐵 of GPU RAM with Google 
Colab L4 GPU. 
 

2.4 Denoised Results 

2.4.1 Second Rhapsody – Franz Liszt, Publication date: 1919 

Figure 5 presents s a frame of the piano piece along with its corresponding spectrogram. The green 
dotted arrows in the waveform highlight the muffled signals, typically indicative of ambient noise from 
the recording environment or low-frequency rumble generated by the turntable. Figure 6 shows the 
result from the proposed model. Both the waveform and spectrogram demonstrate a significant 
reduction in noise while preserving the integrity of the original piano signal. 

 
Figure 5: Noisy Piece from Second Rhapsody. 
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Figure 6: The Denoised piece of Figure 5. 

 

2.4.2 Unknown Piano Piece from the Early 1920s 

Figure 7 illustrates the audio suffering from considerable white noise, with the green arrows indicating 
the presence of clicks and pops/thumps. Figure 8 shows the denoised result, where all clicks have 
been removed and noise energy significantly reduced.  
 
In the research, the spectrogram output was exclusively used for reconstruction and the denoised 
results consistently demonstrate that the proposed model is highly effective at denoising various types 
of noise. This model proves to be a versatile and generalised denoising method, capable of removing 
unwanted noise while preserving the integrity of the original audio signal, ensuring that the desired 
signal remains unaltered. The model demonstrated strong performance while requiring relatively 
simple training and minimal computational resources. Compared to other denoising methods, it 
operates efficiently with a smaller GPU size, making it a practical and resource-efficient solution. 

 
Figure 7: Noisy Piano Piece. 
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Figure 8: The Denoised Piece of Figure 7. 

 
 

3 BANDWIDTH ENHANCEMENT 

Due to the limitations of the mechanical recording process, the recording captured signals only up to 
the maximum 4,000 𝐻𝑧. As a result, it typically requires enhancement of low-frequency signals and 
prediction of the missing high-frequency content. 
 

3.1 Linear Approach - Compensating Filters 

Applying filters to emphasise different frequency ranges can enhance the audio by making certain 
elements more prominent. Figure 9 shows Chopin’s denoised piano piece Revolutionary Étude and 
Figure 10 is the enhanced result, with filters applied to the low-frequency range, resulting in a stronger 
bass and better listening experience. However, this linear approach is limited to signals present in the 
original recordings, and the audio still lacks the brightness of higher frequencies, indicating the 
underrepresentation of high-frequency signals. For a more balanced and natural listening experience, 
nonlinear approaches, such as generative models, are required to predict the missing bandwidth.  

 
Figure 9: Denoised Piece of Revolutionary Étude, Chopin, 1922. 
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Figure 10: Enhanced Piece of Figure 9. 

 

3.2 Diffusion Models 

The diffusion model is a generative model based on statistical and probabilistic principles [14]. Initially 
developed for image tasks, it primarily works with 2D inputs. It operates by progressively adding 
Gaussian noise - distinct from audio noise - to the original data and then gradually remapping it to 
generate new content. These two processes are known as diffusion/forward process and reverse 
process. This iterative process allows the model to learn complex data distributions, making it 
particularly effective for tasks such as audio enhancement.  
 

3.2.1 Diffusion Process 

This process can be thought of as progressively corrupting the data until it becomes pure noise data 
𝑥𝑇. Given the time step 𝑡 and the original clean data 𝑥0, the process can be represented as: 
 
Where αt̅ is a scalar representing the cumulative effect of the noise schedule up to time 𝑡, with 𝑡 being 

an integer from 0 to 𝑇, typically 1000 or more. Gaussian noise 𝜀 is drawn from a standard normal 

distribution 𝒩(0, 𝐼). This process is purely statistical and does not involve any trainable parameters.  

𝑥𝑡 = √𝛼𝑡̅̅ ̅ ∗ 𝑥0 + √1 − 𝛼𝑡̅̅ ̅ ∗ 𝜀                                 (2) 

3.2.2 Reverse Process 

The goal of the reverse diffusion process is to start from the noisy data 𝑥𝑇, which is almost pure 
noise and iteratively denoise it, to get a distribution that resembles the original data 𝑥0. It can be 
represented as: 

𝑥𝑡−1 =
1

√𝛼𝑡
(𝑥𝑡 −

1−𝛼𝑡

1−𝛼𝑡̅̅ ̅
𝜀𝜃(𝑥𝑡, 𝑡) + 𝜎𝑡𝑧                                 (3) 

Where 𝜎𝑡𝑧 is the variance that does not influence the training result. The neural network model is 

trained to predict the noise 𝜀𝜃 added at each step. By estimating and subtracting the noise, the model 

gradually reconstructs the original data 𝑥0.  
 

3.2.3 Training 

The model is trained on 11.2 hours of high-quality piano data and 10% of which is used for validation. 
The linear scheduler is used for the diffusion process and there are 𝑇 =  1000 time steps. The training 

is conducted with a batch size is 2 and over 13,500 training steps. The entire training process takes 

approximately 17 hours. 
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3.2.4 Bandwidth Enhanced Result 

Figure 11 shows a piano piece with limited bandwidth, where the absence of higher frequencies 
results in a muffled sound and diminished brightness. Figure 12 illustrates the enhanced result, 
featuring a more balanced and vibrant sound. The restored high frequencies contribute to increased 
brightness and clarity, providing a more detailed and dynamic audio experience. 

 
Figure 11: Audio Piece with Limited Bandwidth. 

 
Figure 12: Enhanced result of Figure 11. 

 

4 DISCUSSION AND FUTURE WORK 

The diffusion model demonstrates the capability to generate missing audio signals; however, its 
progressive nature necessitates substantial training resources and extended training time. For 
severely degraded historical recordings, the model introduces artefacts. Further work will focus on 
refining the results for such historical audio recordings. 
  
Testing results indicate that the U-Net-based model performs well in piano denoising tasks and shows 
promise for denoising string instrument recordings, despite being trained exclusively on piano signals. 
This suggests that the model effectively captures harmonic structures. Additionally, the model was 
able to denoise audio samples with a sampling rate of 22,500 Hz, even though it was trained only on 
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a 11,025 Hz sampling rate. These results indicate that the model has broader potential for a variety 
of denoising tasks.  
 
In the future, integrating the proposed model with diffusion models and further developing it could 
enable applications such as orchestral denoising or the restoration and enhancement of historical 
speech recordings.   
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