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The transverse vibration of high-speed membrane in the printing process and the "fold" 
phenomenon caused by vibration will seriously affect the printing overprint precision and 
printing quality. The nonlinear vibration characteristics of the axially moving membrane are 
studied. The model of the moving membrane was established. Then, the Von Karman equations 
expressed by the deflection function and the internal force function of axially moving 
membrane are derived based on the theory of elasticity. The time and spatial variables are 
separated by Galerkin method. Then the ordinary differential equations were analyzed by the 
method of multiple scales. The dynamic behaviors were identified based on the time history, 
phase chart and amplitude frequency curves. Periodic, quasi-periodic and multi-periodic were 
occurred under different speed and length-width ratio for the transverse vibration of the axially 
moving membrane. 
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1. Introduction
In the actual printing production process, printing film, textile fiber cloth, printing tape, etc. can 

be modelled as the axially moving membrane. The lateral vibrations are inevitably produced when 
the membrane in the high speed printing process. The vibration can cause the phenomenon of 
wrinkles will seriously affect the printing of the overlay accuracy, thus affecting the quality of 
printed materials.  .

In recent years, the research on the transverse vibration and stability of the axial motion system 
has made great achievements. Chen et al. [1-3] researched the bifurcation and chaos of axially 
moving linear beam, the nonlinear partial differential equation of the transverse vibration of an 
axially moving viscoelastic beam was obtained based on the constitutive relation and geometric 
relation. And the asymptotic analysis of axially accelerating viscoelastic string was made. Their[4] 
also derived nonlinear lateral vibration control equation of strings by using generalized Hamilton 
principle and Kelvin viscoelastic model, the governing equations are solved by using multi-scales 
method and the nonlinear problem of the longitudinal tension and internal resonance was studied. 
The nonlinear free vibration and stability of axially moving strings were studied by Wang [5], the 
motion differential equation of nonlinear free vibration was derived and the nonlinear response of 
the system was obtained.  Differential quadrature method was applied to analyze the axially moving 
viscoelastic beam dynamics behaviour of nonlinear vibration plane by Wang [6]. Kulachenko et al. 
[7-8] studied the nonlinear dynamics of the fold and stability caused by the transverse vibration of 
the membrane by using the finite element. The nonlinear dynamics of an axially moving plate was 
studied by Ghayesh et al.[9-10].
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2. Vibration model and solution of equation by multi-scales method

2.1 Nonlinear vibration model

Figure.1 shows the mechanical model of the axially moving membrane. The membrane has a 
length a. width b, and thickness h in the x, y and z direction respectively. xT  and yT  are the tensions 
on the boundary. ( , , )w x y t  is transverse vibration displacement of the membrane. 

Figure1: The mechanical model of the axially moving membrane

In the problem of large deflection of membrane, the internal force and the displacement of the 
center plane can not be ignored. Based on the large defection theory, the Von Karman large 
deflection vibration equations of the moving membrane can be respectively expressed as
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Introduce the dimensionless quantities
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Eq.(1) takes the form
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Boundary condition
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The equations are derived using the Galerkin method. The dimensionless transverse 
displacement approximation function ( , , )w x y t  and the dimensionless internal force function

( , , )f x y t  can be respectively expressed as
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Substituting Eq.(5)(6) into Eq.(3), using Galerkin method yields the following equation
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The nonlinear vibration differential equation can be expressed as
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The displacement function satisfying the boundary condition is given by
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Eq.(8) takes the form
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2.2 Multi-Scales method
In this paper, the multi-scales method is used to study the nonlinear vibration of printed 

membrane. Assuming that the motion of the system varies according to different time scales. 
0 1,T t T t  . Where   is small. At the same time, the formula (10) is introduced into a small 

quantity  .
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Assuming the solution of the Eq. (11) is
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Substituting Eq.(12) into Eq.(11), yields the following equation
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Let the same power coefficients of   be equal, and the linear differential equations of the order 
can be expressed as
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The solution of the Eq. (14a) is given by
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Substituting Eq.(15) into Eq.(14b), yields the following equation
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The amplitude-frequency characteristic relation can be expressed as
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Approximate solution of nonlinear differential equation for moving membrane can be expressed 
as
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3. Calculation results and analysis

3.1 Time history and phase diagram
According to the large deflection differential equation of the printing membrane, and the  

dimensionless parameters are given, 0.01  ， 0 1a  ， 0 0  . Figure 2 shows the nonlinear 
time-history and phase diagram of the moving printing membrane when dimensionless velocity 

1c   and the length width ratio is respectively 1, 1.5, 2r  . When the dimensionless velocity of 
the membrane is kept constant and the aspect ratio increase, the time-history shows a small cycle 
fluctuation, and the amplitude is slightly reduced. At the same time, the phase diagram gradually 
split into two circles, there is a saddle and two centers. It indicates that when the aspect ratio 
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2r  ,the vibration from the original single cycle movement gradually becomes into the doubling 
cycle movement.
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c=1，r=1.5
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Figure2: The time history, the phase chart for different length-width ratio
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3.2 Amplitude frequency curves
In the case, dimensionless parameter are give， 0 1a  ， 0 0  .Figure 4a show the amplitude 

frequency curves of the nonlinear free vibration of the axially moving printing membrane with the 
aspect ratio 1r   and the dimensionless velocity 1, 1.5, 2c   respectively. When the frequency 

1s  ,the amplitude only virtual part, when the amplitude have a real part, the imaginary part is 
zero. At the same time, it can be seen that the amplitude of the system is increasing as the 
dimensionless the increase of velocity, and the slope of the curve increases. It indicated that the 
increase of dimensionless speed makes the system become more unstable. Figure 4b shows the 
amplitude frequency curve of the nonlinear free vibration of axially moving printing membrane 
with the dimensionless velocity 1c  , and the aspect ratio 1, 1.5, 2r   respectively. It indicated 
that the amplitude of the system decreases with the increase of the aspect ratio, and the slope of the 
curve decreases. It is shown that the increase of aspect ratio makes the system become more stable.

 
(a) r=1                                                 (b)  c=1

Figure3: Amplitude frequency curves under different speed and different length-width ratio

4. CONCLUSION
The nonlinear vibration properties of the moving membrane are studied, and the Von Karman 

equation expressed by the defection function and the internal force function is deduced by the 
elastic theory. The nonlinear vibration characteristic of the moving printed membrane is analyzed. 
The time variables and spatial variables, displacement functions and stress function are separated by 
Galerkin method, and then the ordinary differential equations are obtained and analysed by multi-
scale method. Through the system’s time histogram, phase diagram and amplitude-frequency 
characteristic curve, the results of this study can be summarized as follows:

(1)    As the aspect ratio increases, the system enters the doubling period vibration, and the 
system amplitude decreases and the system becomes more stable. It indicated that the aspect 
ratio of the printed membrane is increased, can improve the stability of the membrane motion 
system, and also can effectively ensure that the membrane work in a stable state.

(2)    The greater the dimensionless speed, the more obvious the large deflection nonlinear 
vibration, the system becomes into multiple cycles. While the system amplitude increases, 
the system becomes more unstable. Therefore, the speed of the printing membrane can be 
appropriately reduced, the stability of the system can be improved, and the generation of 
nonlinear vibration with large deflection can be effectively avoided.
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