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° INTRODUCTION:

Spectral analysis is the basis of many audio measurement systems, e.g. noise
meters, TDS systems, etc. Currently this analysis may be done in real-time
via special purpose analogue or digital hardware or in non real-time via
software. In many cases a real-time (or near real-time) analysis is necessary
and so the instrument designer is forced to grapple with the problems and
additional cost of special purpose hardware. It would be desirable to be able
to perform real-time spectral analysis using standard microprocessor
components as these offer both cost and development advantages.

The Hinograd Fourier Transform (NFT) is a discrete Fourier transform (DFT)
algorithm which minimises the number of multiplications required to perform
the transform by using a more complex sequence of calculations. However, the
reduction in the number of multiplications makes the algorithm suitable for
implementation in real-time on a standard microprocessor. The rest of this
paper describes the NFT algorithm and its implementation.

THEORETICAL BACKGROUND

The Ninograd Fourier Transform is an algorithm that can be used to calculate
the DFT when the transform length can be factored into a set of small prime
numbers (or small prime powers). All the factors must be mutually prime (that
is, each possible pair of factors have an h.c.f of 1), so that repeated
factors or more than one power of the same prime are not allowed. The
algorithm works by first converting the one—dimensional array of data into a
multi—dimensional array via a simple one to one mapping of the data. The
Fourier transform of the resulting multi—dimensional array can be calculated
by carrying out a Fourier transform along each dimension in turn, which is
performed by using some extremely efficient small length DFT algorithms
developed by Winograd [1].

The resulting transformed data is then converted back into a one-dimensional
array via a second mapping. To illustrate the operations being carried out,
the data flow for a 15 point transform is shown in figure 1. This transform
is performed by a two-dimensional transform with factors of 3 and 5.
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Fi ure 1 Data Flow for 15 Point WFT

 

The one to many dimension transform used was first described by Good [2]. He
gives two one to one mappings between the one-dimensional space and the
multi-dimensional space, these being called the Sino correspondence and the
Ruritanian correspondence. For a one—dimensional space of dimension N and a
multi-dimensional space of dimensions (N1,N2..Nn) (where N = N1 x N2 x ..Nn)
and defining

R1 = #1 and Si = iji -l

(where ki is the least value such that (k-Ri mod Ni) = 1)
the Sino correspondence between points [x] and [x1,x2..xn] is given by

x = (51x1 + 52x2 + ..Snxn) mod N - 2

and the Ruritanian correspondence is given by

x = (Rlxl + szz + ..Rnxn) mod N - 3

These correspondances are based on the Chinese Remainder Theorem [3] and so
rely on the dimensions (N1,N2..Nn) being mutually prime, which gives one of
the constraints on transform size.

Good then shows that if the Sino correspondance is applied to the input of a
multi-dimensional DFT and the Ruritanian correspondence is applied to the
output, then the result is equivalent to the result of a one-dimensional DFT.
It should be noted that the proof is still valid if the Ruritanian
correspondence is used at the input of the HFT and the Sino correspondance is
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used at the output.

The small length DFT algorithms used to calculate the multi-dimensional
transform were derived by Winograd [1] by representing the DFTs in matrix
form, and reordering the matrices to turn them into cyclic convolutions, using
the Rader prime algorithm [4]. The idea behind this algorithm is that the
order of evaluation within the summation term of the DFT (see equation 5) is
unimportant, as is the order in which the frequency terms are calculated, thus
any permutation of the indices i and k that makes the calculation easier to
perform may be applied. This permutation corresponds to interchanging rows or
columns in the matrix representations of the transform. Determining a
permutation that puts the matrix in the form of a cyclic convolution allows
the application of fast convolution algorithms, such as those developed by
Winograd.

The Radar algorithm relies on the size of the small DFT, N, being a prime
number, which means a number, r, can be found such that there is a one to one
mapping between the integers n and the integers r(n) (where both n and r(n)
lie in the range 1..N-1), given by

r(n) = ( rn ) mod N _ 4

The short-time DFT, ignoring the windowing operation, is given by

N-1
X[k] = 2 x[i]w[ik] where w[ik] = e-jzwik/N - 5

i=0

Treating x[0] and X[0] as special cases gives the following pair of equations

N-1
X[0] = _§ox[i] Eat X[k] - X[0] = ’21x[i](w[ik] — 1) - 6

1- 1=

Applying the permutation of equation 4 to equation 6, so that i a r(i) and k 9
r(k) gives

N-l
X[r(k)] - X[0] = .21X[r(i)](W[r(i)r(k)] - 1) - 7

1:

and as w[n] = w[n mod N]

N-l
X[r(k)] - X[0] = .21X[r(i)](W[r(i+k)] - 1) - 8

1:

Given that for integers, n, outside the range 1..N, r(n) = r(n mod N-l) from
Euler’s theorem) and as r(n) lies within the range 1..n-1 (by definition}
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equation 8 can be recognised as a cyclic correlation, and, by reversing the
order of the sequence x[r(i)], can be transformed into a cyclic convolution.

Winograd shows that the Rader prime algorithm can be extended to transform
lengths that are powers of a prime. Then, using a technique developed for
calculating cyclic convolutions (designed to minimise the number of
multiplications required) he decomposes each reordered matrix into a series of
additions (which may expand the size of the input data), a series of
multiplications, and a second series of additions (which will contract the
data back down to the original size). These may be represented in matrix form
by

N = A" M A’. - 9

where N is the small DFT operation, A’ is the first series of additions
(hereafter referred to as the pre-weave matrix), M is the series of
multiplications, and A" is the second series of additions (the post-weave
matrix). A’ and A" consist solely of ones and zeroes, while M is a diagonal
matrix whose coefficients are either purely real or purely imaginary. This
means that only two real multiplications are required for each complex
multiplication, rather than the four that would be required if the
coefficients were complex. Ninograd includes algorithms for 2, 3, 4, 5, 7, 8,
9 and 16 point DFTs in his article [1] — larger sizes than this are relatively
inefficient. As an example of the operations involved, the derivation of the
5 point DFT algorithm is given in an Appendix at the end of this paper.

A further reduction in the number of multiplications required by the complete
algorithm is achieved by reordering the calculation of the small DFTs.
Consider the matrix form of figure 1.

 

            
       

w,5 = R" M5 w, R’ = R" A; Ms A; A; M A; R’ - 10

   

 

        

 

where R’ is the
matrix.

  input reordering matrix and R" is the output reordering

       Due to the special characteristics of the addition and multiplication
matrices, this equation can be reordered as follows     

   

      

     

   

 

  
v.5 = R" A; A; M5 M, A; A; R’ - 11

  and as MS and M5 are diagonal matrices, multiplying them together will give
one large diagonal matrix containing all the multiplications needed by the
transform. The validity of this reordering may be proved either by matrix
algebra [5] or by conventional algebra [6]. The data flow for the reordered
equation is illustrated in figure 2.
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Fi ure 2 Data Flow in Reordered 15 Point WFT

 

Several advantages are gained by using the WFT rather than the FFT apart from
the obvious one of speed. Having only one stage of multiplication makes
scaling the transform easier, and reduces rounding errors. Also, as real and
imaginary data are separate until after the multiplication stage, real
transforms take approximately half the time of full complex ones. The
disadvantage is algorithmic complexity — the FFT may be coded in a few lines
of a high level language, while the WFT takes several hundred
lines.

HARDWARE IMPLEMENTATION

The hardware required for a speech analysis system based on the WFT includes
an A/D convertor, a microprocessor, some memory and some means of transmitting
the resulting frequency information. For the A/D convertor the Reticon R5640
was used, which incorporates an anti-aliasing filter, sample and hold circuit
and a 10 bit A/D convertor on one chip. The processor used was the Motorola
68010 (running at lOMHz), selected for its ease of programming, large variety
of addressing modes, and speed. The 68010 version was selected because it
performs (multiplications) significantly faster than the standard 68000. 16K
bytes of CMOS static RAM and 16K bytes of CMOS EPROM were used for memory, as
these have fast enough access speeds to allow the 68010 to run at 10MHZ with
no wait states. For transmission of data a 68230 parallel interface was used.
The total cost of this system was under £100.
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SOFTWARE IMPLEMENTATION

For high quality speech analysis a frequency bandwidth of 6kHz is needed,
requiring imput sampling at leHz. A frequency resolution of 100Hz, with a
new transform every lOmsec is adequate to resolve transitory information. A
120 point transform, performed in under 10 msec is therefore required. This
factors into a (3 x 5 x 8) transform which is one of the more efficient sizes
to use as both the 3 point and 8 point DFT algorithms cause no expansion of
the input data.

Separate pre-weave and post-weave routines were written for each of the small
DFTs. Because the data must be reordered between each routine (the input
reordering R’, intermediate dimension reordering, and the output reordering
R“) the pre—weave routines are designed to access their input data via index
arrays, while the post-weave routines do the same with their output data.
These index arrays can be pre-calculated, along with the array of multipliers.
This system of data access can be implemented very efficiently on the 68000,
due to the existence of a post-increment register indirect addressing mode,
and is more efficient than the normal means of data access using nested loops.
It also means that no separate reordering routine is required for the input
and output reordering, as all pre-weave and post-weave routines have it built
in. A sample routine for the 5 point DFT, and the outer routine for the WFT,
both written in Modula-Z are given in appendix 1. For the final code used by
the 68000 all routines were written in assembly language, the multiplication
routine was combined with the output of the 5 point pre—weave stage, and the
parts of the pre-weave and multiplication routines that deal with the
imaginary half of the data were deleted. Other tasks performed are data
sampling, windowing (using the Hanning window), log magnitude calculation and
data output. 16 bit integer arithmetic is used throughout the program, which
means that the only scaling required is truncation back to 16 bits after the
multiplication stage. The constants in the multiplication stage must,
however, be scaled so that the largest constant equals 32767, to give the
greatest possible numerical accuracy.

PERFORMANCE

The following table compares the time taken by the NFT and FFT for two sizes
of transform and several different implementations. Timings for the 32010 are
from reference [7]. All timings are for a full complex transform.
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Processor Language 120pt WFT 128pt FFT 240pt WFT 256pt FFT

8088 @4.77MHz Modula-Z 170ms 660ms

C 85ms 440ms

68010 @ lOMHz C

Assembly

32010 @ ZOMHZ Assembly

 

A program has been written to display the results obtained from the transform
board on the IBM PC. Time is displayed horizontally, frequency vertically,
and amplitude by digital halftoning using a 4 by 4 cell [8]. A sample
spectrogram is shown in figure 3.

CONCLUSION

This paper has described the WFT and its use as a technique for providing real
time spectral analysis on a standard microprocessor. The broader application
of this technique has the potential for providing lower cost audio measurement
systems.
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APPENDIX - DERIVATION OF THE 5 POINT HINOGRAD SMALL DFT

The 5 point DFT can be represented by the foilowing matrix operation:

1 1 l 1 l

l w1 w2 w3 w4 = X[n]
1 w2 w4 w1 w3 = X[n]
1 w3 w1 W4 “2 = "[n] = e—ijn/S

l w4 w3 w2 w1

Reordering the matrix according to the Rader prime aigorithm, by exchanging
the middie two columns, exchanging the iast two coiumns, then exchanging the
1ast two rows produces the foIIowing operation:

1111 x0
w1 w3 w4 w2 X]

w4 w2 w1 w3 X4

1

1

l w2 w1 W3 w4 x2

1

1 W3 W4 X3

From this we get

X0 = x0 +x1 + x2 +
and

xl-xo wl-1 w2-1 x1
xz-xo = w2-1 w4-1 x2
x4-xo w4-1 w3-1 x4
x3-xo w3-1 w1—1 X3

which can be recognised convoiution of the form:

Y1 x1

YZ X2

y3 X3

Y4 . x4
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Using the Winograd algorithm for cyclic convolution, the convolution y[n] =
h[n] x x[n] can be calculated by the following matrix operation:

H1 0 o o 0
H2 0 o o
0 H3 0 o
o 0 H4 0
o o 0 H5

Y1

y2

Y3

Y4

where

This gives

Xl-Xo

Xz-Xo
X4-Xo
x3-Xo

X0

X1
X2=.X3

X4

122

0 -1

1 -1

1 —1

1 '1 -l -1 0H
J
a
n
—
-

H
Reversing the first two
transform to be represented in matrix form as follows:

1 —l

1 -l -1 -1

l —1

Mo 0 0 0 0

M1 0 0 0

0 M2 0 0

0 0 M3 0

0 0 0 M4 0

0 0 O 0 M5

0

M1 0 o o o
0 M2 0 o o
o 0 M3 0 o
o o 0 M4 0
o o o 0 M5

stages of this derivation

0

0

O

0

1

0

O
O
O
O
O
n
—
I

1

l 1

1 -1

O
H
H
H
H
H

1 -l

1 1 -l -1

0 ‘1

l 0 -1

allows

-1 -1

-1 1 -1

0 0 -1

-1 1 0

X1
X2
X3
X4

x1

x2

x4

X3

the complete

X0
X1
X2
X3
X4

REPRODUCEDSOUND3

  



«é K‘fl‘u‘fif
AUDIO SPECTRAL ANALYSIS USING THE NINOGRAD FOURIER TRANSFORM

 REPRODUCED SOUND 3 



Institute of
@@ CG Acoustics

  1 24 REPRODUCED SOUND 3

 


