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ABSTRACT A treatment is given to the mathematical problem depicting
wave propagation through layered media. The solution procedure
of the resulting integral equation is iterative. Unlike other
iterative schemes, the present iterations are guaranteed to
converge to the unique solution. .The numerical calculations on
the computer are recursive in character and are thus compatible
with machine operations. This is an attractive feature in a real
time system.

1. INTRODUCTION m

In many models of the ocean environment, the medium is presumed to vary
principally along an axis nonnal-to the boundaries. The relations between
such medium properties and the propagating wave within are not generally
available_in terms of known functions. Approximate methods exist but have
constraints on the region of their validity. A direct numerical solution is
helpful but it is not useful when scaling laws are to be applied or a generalrelationship is needed. The'present work attempts to develop a complete
solution which is generated by a series of successive approximations that aregenerally valid and that do lend themselves to easy implementation on thecomputer [1, 2 and their references]. -

2. SOLUTION TO A CANONICAL PROBLEM

 

The solution to a canonical problem in wave propagation is presented
first, then applications are carried out to study cases that appear to be
at variance with the b sic procedure. The canonical problem consists of a
plane wave Ae'1‘koX"Wt incident on an arbitrary and continuously stratifiedregion with planar boundaries [Figure 1]. The explicit composition of the
reflected, transmitted and propagated waves are derived. The solution issystematic and allows for (i) discontinuities in the acoustic properties atboundaries and arbitrary variation within, (ii) attenuation, (iii) all
angles of incidence. The auxiliary mathematical constants are plainly
amenable to physical interpretation.

When the traditional formulation is followed, a Fredholm integral
equation results. Its Neumann series solution is valid when the inhomo-
geneous layer is thin and/or the-perturbation is small. Though the Fredholm
series solution is generally valid, it is encumbered by multiple integrations
over large order determinants [4]. The present procedure avoids the precedingdifficulties and remains applicable to thick layers which large perturbations.The present formulation yields a Volterra integral equation

u(x) = h(x)+H(a)q(x)+A gXK(x,X')u(X')dX', (1)
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The term An(x) denotes the perturbation in the index of'refraction that
renders the initial differential equation without a recognizable solution.
The functions u1(x) and u2(x) are the recognizable solutions to a chosen
part, Ko(x), of the total index of refraction. The prime symbol_on a function
denotes a derivative with respect to x. '

The iterative solution for the field u(x) is convergent with
N
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The size of N is controlled by the desired solution accuracy. The reflection
and transmission coefficients are respectively '
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The characteristic equation that governs the natural frequencies of the
‘. I system is derived-from equation (4) by2nulling the source function. This yields

' a N x' y "r

' [1- Idx'M(a.x')z i" I dy'K(xLy')...I K<y "-2).y("-1>)q(y("-1))dy("-1fl=o (a)
l 0 n=1 0 . 0

The discrete normal modes corresponding to each natural frequency is
. generated by the same iterative form given in equation (3).

.] 3. APPLICATIONS

'The expanded applications treat formally a series of problems using
I the unified approach. _ -

. I 3.1 A Slowly Varying Profile

In many cases, an arbitrary form for k02 (x) may be taken where its
variation is small over a wavelength. Then, t e N-K-B approximation holds.
Whenever the background profile changes sharply, such a solution is in error.
For non-normal incidence also, there exist angles of incidence where K°(x)
goes to zero and the w-K-B approximation fails [3].

 

  To correct the induced errors, the problem is formulated so that the
simplicity of the w-K-B approximation is retained as a first approximation.
Improvement on that solution is obtained by treating the error as a perturbation.
The resulting Volterra integralequation is:
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The basic functions

u1(x)= %(2“”3)/L1/2(x)}x1/2(x)H§};[x(x)],
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I with X(x)= { L1/2(x')dx', satisfy the equation for the background profile
0

near the turning point and t in inity for a ba round profile K (X):
J [L(x)->\n(x)], where n(x)=[d%r/dx ]/r‘and r(x)=XE§g(x)/L1/4(x), [334].     

 

3.2 Point Source in a Layer

1 The problem of a point source radiating in a layer has been separated

into two canonical problems [3] of the type defined here. The integral

expressions for the field call in their integrands for speCification of the

l propagated wave and the reflection coefficient, when a plane wave is inCident

. 'on the inhomogeneous half spaces to either Side of the source. The unknown

terms in the integrands may be specified using equations (3—4).

 

      

       



 

-3.3 Nonlinear Wave and Bifurcation Equation

A large amplitude wave produces a nonlinear behavior in the medium which-
in turn influences the propagation characteristics of that wave. The ’
perturbation n B,u(x)} contains thenonlinearity as it is now functionally
dependent on the field. The solution for u(x)_is given by _

“(h)(x)=xn-1 dean I{x‘xl ’n[xl “(n-l)”. .

0 .

and the bifurcation equatgon is

‘a=% [auo(x')n[x', Z u(i)(x',a)]dx'
o “ ' i=1_ »

where W is the Wronskian.

3.4 Machine Implementation

For machine implementation, the preceding approach is dissected to
, reduce it to a recurrence relation. With the present approach, the solution

is determined in about n2/2 operations where n is the matrix size, as
compared to n3/3 operations used in Gauss elimination or n2 operations for
each iteration in a Gauss-Seidel solution. For unforced systems, the resent
process is efficient and requires n2/ operations in COntrast to the n
operations required by techniques sucfi as Leverrier-Faddeev method. Extended
computer simulations show a reduction in Solution time roughly proportional
to n when compared to Gauss elimination or Leverrier-Faddeev and twice the
iteration number when compared to a converging Gauss-Seidel result. In
addition, the storage requirement is reduced by nearly one half and the
numerical accuracy is increased by a factor of two. Results on extended
computer simulations are presented to substantiate the accured improvement
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