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The design of robust optimal arrays has been pursued for many

years. Gilbert and Morgana) maximised the directivity of an antenna

with a constraint on the white noise response achieved by augmenting

the diagonal of the Covariance matrix of the isotropic noise. Lo et

at”) suggested the use of a bound on the array Q—factor or ratio of

reactive to real input power in a tranitting antenna and this con-

nkler and Schwartz (3)
cept was applied to a sonar receiving array by Wi

' (4)
Cox hasdiscussed both of these constraint systems

In the system to be described robutstness is achieved by the use

of an inequality constraint on the weight vector W of the type WTAwsl

where A is a preset Hermitian matrix whose parameters will be deter-

mined from a—priori assumptions about the nature of likely errorsin

wanted signals. For the special case when A is an identity matrix the

constraint syst is very similar to that used by Gilbert and Morgan

in its final result though the method of achieving the constraint is

by a direct operation on the weight vector rather than by modification

of the signals. It is therefore more suitable for on-line adaption

rather than off-line optimisation since in the former case nothing

may be known a—priori about the signal field.

The optimisation criterion to be used is minimisation of the

total output power of the receiving array subject to a linear con—

straint on the weight vector of the form CTW = 1 where C is a vector

of complex phasors which define the look direction of the array, a

(5)
and others. The non-linear inequality

systan described by Frost

'1‘
w hwsl will he applied if necessary. Thus if R is an estimate of

the covariance matrix of the signa1+noise field:

1
R = K (1.1)

K
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where xk is the vector of complex sensor samples at time 1:k then the

processor simply solves the non-linear programing probl

Minimise output power: anw

subject to CT“ = 1 \

WTAW s 1 (1.2)

   



 

Because of the convecity of quadratic forms it can be shown that these

equations have a unique solutionfiw=wo corresponding to output power Po

and this power is our estimate of the signal strength in the direction

corresponding to steering vector C. A variety of methods are avaiable

writing such an algorithm (7) .

In order to choose the matrix A the following observations are

used:

(a) it is obviously necessary for the adaptive processor to have the

requisite robustness to signal perturbations when only the wanted signal

is present and there is no noise

(b) if the processor is designed for single signals it may be sufficiently

robust when multiple signals are present coming from different direc-

tions. The single signal design covered in this paper is in fact quite

straightforward and the non-linear constraint system evolved deals

quite successfully with multiple signals as shown by simulations given

only that different arrivals are uncorrelated. It will not handle

correlated arrivals as might be caused, for example, by multipath

propagation.

2. single signal analysis. The single narrow-band signal is des-

cribed by the product of a scalar time function s(t) with a time-invar-

iant space vector S which is a vector of complex exponentials describing

the relative phases of the incoming wave at the different sensors.

The waveform s(t) is not of interest here and is dropped from the

equations. since the processor converges to a minimum output power state

it will seek the unique weightvector W which minimises

P = WTRW = WTSSTW (2.1)

Moreover except in the improbable event that s=c the output power will

be zero unless the inequality in Eq. (1.2) becomes an equality. In

other words, in the absence of background noise the purely linearly

constrained processor will reject every signal (see for example Zahm‘a) ).

The solution of age. (1.2) with these assumptions can most easily be

found by using the orthogonal eigenvectors of Bermitian matrix a as

a coordinate syst, i.e.

A N 'rA = Eaiuiui (a1 real 2 o) (2.2)

where the orthogonal vectors U are normed to N, the number of sensors:

T
0101:-

i

“sci—j) (2.3)

*Assuming R is not singular
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The vectors 5, C, (norms = N) and W are resolved into weighted sums of

the Ui:

1
w — N wu (2.4)
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Introducing Lagrange multipliers A" and AC we write Eq. (2.1) in the form

N
P=[§wisi]2+ cii

H
M
Z

[Awdwilzai - 1) + A (an: - 1)] (2.5)

At the extrana of P the partial derivative with respect to each com-

ponent w is zero, i.e.
i

BP/Bwi = 2siy + leaiwi + Acci= 0. i = LN (2.6)

where y is the output amplitude

N Ty =2 51w1 or s w (2.7)
1

Since the component of w parallel to C is fixed by Eq. (1.2b) matrix A

can be orthogonal to C. and this is accomplised by setting Uls C

and the corresponding coefficient a1= 0. From Eqs.(2.4) this immediately

1 1 = o, i = 2,)! and VI = 1. Eqs.(2.6} can be

solved for AC when i = l and the raining N-l equations:

requires that o = 1. c

Zeiy + leaiwi = O, i = 2,}! (2.8)

have the solutions

N -‘:- - 2 —1
vi = -e is s1a11[élsjl aj ] i = 2,N (2.9)

or in actual variables, the component of w orthogonal to C is

w = w - fie = -e_je A‘s/(STAIS)" (2‘10)

I I -2 N -l '1‘
where A is the pseudo-inverse of A, A = N Xai uiui (2.11)

2 .

T
and e = arg(S C) (2.12)

Final-1y the extreme of output amplitude [yl are:

' a '1' 2 -1 a2 -1 T 1 s u a (2.13)
lyl=|siw1| : [Eisj aj] = |S CHI—ND! il 1]

The difference solution is used so long as the result is positive to find

the minimum amplitude. If the difference goes negative it is assumed that

the output amplitude is zero and inequality (1.2c) has slackened.
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Fig. 3 shows the boundary of the feasible region corresponding

to Eq. (1.2c) projected into the hyperplane orthogonal to C for a three

element array with all real values. The minimum outputpower point

occurs when the weight vector projection 11) finds the point on the bound-

ary such that the normal to the boundary is parallel but opposed to the

projection of the signal (PCS = (I-CCT/CTC)S) . The concentric ellipses

refer to a complex signal field condition and will be discussed later.

3. Time invariant sensor gain errors. The first design example is

to make the processor robust for small sensor or channel gain errors.

A signal arriving exactly from the look direction has vector SEC but

in the presence of gain errors the processor receives a vector 5' whose

elents have amplitude and phase perturbations which can be represented

by the addition of a vector 3 of random samples:

5' = s + 013' (3.1)

, Vector E is assumed orthogonal to S and is normed to N, ETE=N which

allows a to be identified as the sample standard deviation of the

channel gains. It is assumed that while a likely upper bound for

a is known, the vector 3 is a random sample from a distribution which

is isotropic in the vector space of the data (with the exception of

direction S) and its direction is unknown. Writing w = we + u) where

Wc is the conventional weight vector (it; c) we have for the output ampli-

tude of the adaptive system

ya = (s + omec + w) = 1 + aETu) (3.2)

II IIwhich uses BTWC wTwc 0. From the triangle and Cauchy inequalities

we have

'51 - omesTE)“ s Iyals 1 + 0(mTuBTE) (3.3)

and for the single signal case the smaller value will prevail. Response

variations limited to 5 can be assured by the inequality

0(mTwETE)‘, s 6 (3.4)

which is easily converted to a bound on the norm of a): NwTusGZ/oz.

Thus the assumption of isotropic gain errors leads directly to a matrix

A which is effectively an identity matrix and the constraint is thus

similar to that used byGilbert and Morgan“) . Numerical values might

be a = 0.1 (7% amp. plus 4° rms. phase error) and a limit of 5 = 0.3
which gives NtuTwS9. Thus A = -:-PC or a = 5 i = 2,N. Fig. 1 shows (a)1
conventional main lobe, (c) adaptive response with syst under discussion

and (d) adaptive system response with A = [CI . For the latter case the

response is rather directional limited only bythe incoherent noise back-
(8)

ground ' which was set at -30 dB. The five element array gives a gain of
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6_g :11! against this noise which is not battered by the adaptive array.

The effect of introducing channel gain errors corresponding to a = 0.1 is

shown in Fig. 2. The system under discussion (c) has lost about 4 d3

of the signal while the syst without the non-linear constraint ((1)

has lost about 18 dB so the desired robustness has been achieved.

An algebraic expression is easily derived for the adaptive system

response from Eg. (2.13) in the absence of gain errors:

2 ‘1
lyalmin a chl - 3(1 - lycl ) (3.5)

which fallsto zero when the normalised conventional response [ya]

= |-:- sTcl falls below (0.9);’

4. Signal bearing mismatch. Figs. 1c and 2c show that the adaptive

processor has a high resolution. This might be advantageous for some

applications e.g. detection but for others e.g. communication systems

might be regarded as a lack of robustness to signal bearing error. The

matrix A can be modified to reduce the system sensitivity to bearing

error as follows. A Taylor series expansion of the signal vector

about the look direction (S=C) as a function of bearing has the form:

2

(e) +%s‘2’(e) + (3.6)so + h) = 5(9) + hsu)

where h is the bearing shift and 50‘)

derivatives of the elanents of 5(6) with respect to hearing. For example,

(9) is a vector of the k-th

for a co—linear array lying on the x-axis with element coordinates x1

5(8) = exp(j21vxisin(6)/l)

5(1) (9) = ijr/A xiexp(j2nxisin(6)/M (3.7)

The derivative with respect to sin(6) has actually been used for

simplicity. For small bearing shifts, Ihkl, the change in signal

(1) (8) and in Eq. (2.2) if we make

of Eq. (2.4) is proportional to h for

then from Eq. (2.13) the

vector is predominantly parallel to 5

U2 = Nl’su) (Mlllsw (e)l| then 32

small shifts and by using a large coefficient a

change in response caused by the bearing shift :ill be small! Numerical

methods are called for at this point but as a rough approximation, if

a2: 1 the resulting syst will not null out a single signal until the

conventional response has fallen by about 3GB. Matrix A has the remaining

coefficients set to l as before and the raining orthonormal vectors
9

Hi. i=3,N are an arbitrary set each orthogonal to I12. This leads to

_ l 2 TA - 9 NPC + 9 02L!2 (3.8)

*A technique much developed by ECDR A. Paulraj, Cochin Naval base, India.
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Figs. lb and 2b show the directional response using this matrix. It is

interesting that the use of the modified constraint has caused a shift in

the bearing estimation bias of the adaptive processor (taking maximum

response as the source bearing). The processor with the 'spread' beam

will not have such a good gain against: isotropic noise as the original

non—linear system in certain conditions and will certainly have worse

performance for interferences close to the signal direction.

5. Complex signal and noise fields. The performance of the system

in an environment rich in signals is difficult to analyse but simulations

tend to show that the directional response is an approximate convolution

of the single signal response with the true source spectrum. Thus in

Fig. 4 there are six plane wave sources at bearings and with powers _

indicated and the array has six elements at 0.31 spacing so is not very

different from that used for Figs. 1 8: 2. Channel gain errors of 10%

were introduced for realism. The four curves are labelled as the previous

figures and they indicate that the adaptive system with a simple norm

constraint (c) has the best performance closely matched by (1:) whose

resolution is rather less. The conventional systen has failed to detect

the -20 :13 source due to sidelobe spread while the purely linearly

constrained adaptive system shows a strong suppression of the strongest

source (d) . Isotropic background noise is present at -30 dB and the

adaptive processors' output fallsto a level commensurate with this when

steered between sources.

For an arbitrary sampled covariance matrix R the optimal non-linearly

constrained weight vector w is given by the Lagrange method as

w = (R +AA)_lc/(CT(R + AIM-1c) where the coefficient M20) is chosen to

satisfy Eq. (l.2c) but whose valueis very difficult to determine except

by eigenvector techniques and even then is markedly sensitive to numerical

(7) have been usedto solve for theerror. Non-linear programing methods

weight vector. The solution corresponds to the weight vector projection

into the hyperplane orthonormal to C finding a point on the feasible region

boundary where the gradient of the output power V“ (P) is normal to the

boundary. The level curves of power in this projection are ellipsoidal

and concentric at the point we which is the projection of the purely lin-

early constrained optimal solution. These curves areshown in Fig. 3.

The non-linearly constrained output power is that level curve which forms

a tangent to the feasible region boundary.

6 . Conclusions

The constrained processor described offers a robust adaptive estimate
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of angular power with limited a-priori knowledge and in the presence

of random channel gain errors has much better performance than the

linearly constrained adaptive processor. Robustness to bearing errors

in one dimension has been discussed, this could easily be extended to

two dimensions and insensitivity ro range error could be introduced by

appropriate selection of constraint matrix A. Some caution is necessary

since the system is still sensitive to large channel gain errors, e.g.

sensor failure, and to correlated arrivals from different directions

due tomultipath effects. Greater robustness can be obtained by reducing
(6)

the size of the feasible region but null-steering performance begins

to decline.
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Fig. l 5 elent array main-lobe Fig. 2 5 element array main lobe

reSPOHSE- response as Fig. 1 except 10$ ms

(8) com]. 03) Dom and tilt channel gain errors.
constr. (c) norm oonstr. only.

(d) linearly constrained.

Zero channel gain errors.
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Fig. 3 Representation of

feasible region and nature of

conventional, linearly constrained

and non- linearly constrained

solutions.
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Fig. 4 Response of six element

array to multiple sources.

Legend as in Fig. 1.

  



     
Fig. 1.5 Effect at 20% Ins. Fig. 1.6 Effect of 30% two.

channel gain errors. channel gain errors.
   

  


