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Introduction

- N 1964 an article was published by Hufnagel
and Stanley (1) in the Journal of the Optical Soclety of
America, relating to the optlcel image-degrading effects
of atmospheric turbulence. It was primarily concerned
with the performance of astronomical telescopes. It waa
realized that the method that they used could apply- also
to the scattering of acoustic waves in water. The
present paper is an attempt bto explain the underlying
1deas and to maks them svallable to agoustics engineers.
As far as the suthors are aware the principle involved,
that of finding a statistical solutlon to the wave
equation, haa not eppeared vefore in acoustical literatwee.
Instead of asetting out to find expllelt expressions for
the exact time-waveforms at various polnts in the medium,
the idea 1s %o esgtablish a direct relationship between
the time-averaged product of the fluctuations at a palr
of receivers and the statilatical properties of the medium.
The mathemsbical analysls 1s somewhat lnvolved and would
be ocut of place here. It will merely be summarlzed.
A Puller account will be found in reference 2.

Comparison with ray theory .

Agcording to ray theory, as a
wave travels through each volume elsment of thickness
its amplituds remains unchanged but its phase 1is advanced
or retarded slightly by an amount proportional to the
departure of the local velocity of propagation from its
mean value. The total result therefore will be a
phase shift which 1s obtalned by summing the contributims
from the volume elements which lie along the ray path.
This aimple approach 1s all very well provided the
cumulative phase shift is very small. It fails to
explain the amplitude changes which also ceccur and 1t
soon breaks dewn completely when the phase fluctuatlons
exceed a few degrees.

The important result which emerges from .the
Aufnagel and Stanley theory is that if we nevertheless
pretend that the ray theory is exact 1t will lead to the
correct result as far as the spatlal coherence of the
wave flucbuatlons are concerned. in other words, the
coherence function of the resl waves turna out to be
Just the same as that of the hypothetical waves which
t
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would be expected from simple ray theory. It should
be pointed out however that thelr proof of this resuls
depends on the assumption of plane waves and paraléll
rays. Although fully Justifiled in the matronomical
éase which was being considered this will not alweys be
so in underwater acoustics. Although, as wllli be
geen later, the authors have attempted to extend the
theory to rays diverging from a polnt source and although
this has led to plauslble results, rigorous mathematical
proof of the validity of the extenslon iz stlll awaited.
Tao start with, consider the case of parallsl rays.

Application to pair of paraillel rays

Suppoge that the Inhomogeneity of the medium is
expressed by a'quantity/-l- s whieh 13 a function of
pogltion and tlme, sush that the velocity of propagation

C 1is given by : '

E=gl)

where C, is the mesn  value

' of .
The total phass change along a path parsllel to the Z-axls
is then d2 i.e. the wave 13 multiplied by & complex
factor ol where =§.&4¢: . The spatial cohersnce
funetion is obtaihed multiplying one such factor by
the complex econjugate of that for the other path and
1s thus of the form jhs -
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and <2 denotes time-averaging
Making use of a theorem from probability theory, this
can be transformed into the form

<€:ah=;, ,_. e-gﬂ'(s‘>

The reat of the analysis 1s concermed with the evaluation

of £5%% Before this can be dons it 1s neceasary
to assumed soms algebraic expression for the spatiml
coherence function of . A very convenlent cholce

is the “Gaus-s_iap distribution” function whieh becomes
| R = Yl = e80T
>

.o where and ply are the values of at two
peinta aaparab):cli by o distance % and X,/u 1s the

reference distance at which "R, has fallen to a
value of e_i . It then tdrns out that
{e’h> = ehk(l—ﬁ}
2 a
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and & 1is the distance between the two parallsl paths,
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How the "algnal® part of the wave can’ identifled by
finding the limiting value to which Le*"*7tends as &
is inereased indafinitely. When this has besen done
the signal part of the wave can be subtracted to determine
the "noise". Twis gives the coherence functlon for
the noise as . ‘P
= (& 'l)

Y=

Filnally we can use this result to compute, for varlous

values of K the value of the ratio % at which ¥
has fallen to @ % § (see fig. 1). (%2

The polint to note is that when K is small, that is
whon the total fluctuation "nolse"™ 1s amall compared wih
the "aignal", the coherence distance for the fluctuation
noise 1s the sams® as that of gt , as predleted by simple
theory (see, for example, ref. 3). When K 1ls large
however the cchersence distance of the noise falls off at
a rabte inversely proportional to the range 2 and to the
r.m.3. valus of F. . ’

Divergent ray petha

The same general argument 1s used except that the
separation a now becomes & variable and has to bs
treated at such when the various Integration operaticns
are carrled out. The result 1s of the same form
a3 before except that p becomes s llttle more complicated.

It 1s now
=G (%) 5 wekk

One fact whilch may be of Intersst is that, when K&\,
the shape of the resulting spatial cohersnce curvae. for
divergent rays happens to be very similar to that for
parallel rays if %, 1is replaced by2Z%. « Thus,
under these conditlons, the coherence distance of the
fluctuaetions is about three times as great for rays
diverglng from a point source as 1t would be for parallel
rays which had travelled roughly the seme distance.

As atated earller 1t ls not known how much reliance can
be placed on this result but 1t is certainly plausibla,
on the gounds that the average separation of divergent
paths 1a less than that of parallel ones ao that the
waveg would be expected to remain more coherent.
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Conclusicona .
This analysia confirms that, for small amounts of
fluctuation molse, the coherence dlstance of the noise
is poughly equal to that of the medium itself. It
goes further however and ahows how the coherence of
the noise falls when the nolse-to-signal ratlo passes
a cartaln limit. The theory has besn exbtbended to ‘
the ceage. of waves radiating from a point source embedded
in the inhomogeneous medium. Although not rigorous
mathematically this leads to a result which is at least
plausible, in the sense that 1t predicta a greater
coherence for waves from & -polnt source than for plane .
waves which have travelled the same disbance through
the medlum. .
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