Proceedings of The Institute of Acoustics |

NEAR-OPTIMUM SUPERRESOLUTION WITH A NUMERICALLY EFFICIENT ALGORITHM

J. E. Hudson

Dept. Electrical Eng., University of Loughborough, Leics, LEL1l 3TU.

ABSTRACT trigonometric to a polynominal one eg./9/.

Statistical arguments are used to show
that 3 generalised beams contain all
the directional information required sufficient Statistics.
to resolve two close sources with Gauss-

jan or sinusoidal waveforms with an arr
of arbitrary shape and number of S(8), i.e. the elements of S are the

elements. i enk U type . .

L me. S . A Pisar O/M SIC typ received complex signals relative to

algorithm is used to estimate the source . :
. . a reference when the source is received

bearings in the three beams, the work.

with unit amplitude. th
load is very small, and performance * * mpLitude When ere are

- two signals present with complex ampli-
s t - .
approximates the Cramer-Rao Lower bound tudes ul(t) and az(t) the model for the

2. Mathematical Description.

In an array of N elements let the direct-
ay .
on vector for a source at bearing ¢ be

1. _Introduction received data is

X(t) = t + +
The usefulness of high resolution is (t) 0L:L( )Sl 0L2(t)82 wo(e) (1)

limited by two factors (a) the required where W is a random,noise vector with

SNR and signal purity (i.e. freedom complex Normal (0,0 ) uncorrelated

from multipath and error)} may not be elements. If the amplitudes have a
available (b) the work load for the joint Gaussian distribution then X is
digital processing is very high, the Gaussian, however it will be convenient
typical algebraic technique requiring to place no prior restrictions on their
the eigenstructure of an N by N statistics. The likelihood of observ-
Hermitian matrix to be determined for aning T independent samples Xl""’XT is
N element array. This paper describesp(x %) = 1 oxp - 1

a method for reducing the latter work- 10 (WOZNF‘ P 02

load problem. First of all it is
shown that if the sources lie in an
angular region sufficiently small that
a three-term Taylor series represent-
ation is an accurate description of
their direction vectors then the

T 2
cxllx -l @)
1
where ,_ is the mean value for sample t,
and the log likelihood )\ is proportional

to
projection of the data onto the low T . 5
dimensional space spanned by the vector A = Const - I ] Xt - utll (3)
Taylor series is a sufficient statistic 1

for estimation of the source parameters,The mean He is given by B = ZAt:where
viz. bearings and amplitudes. 2an ZA-[S g ] and = A ( RN
algebraic method for processing this = LT B =10
projection is then devised, based on . . .. .vion of (3) over the domain of
established high resolution techniques.A with each sample allowed a different
Since the correlation matrix is only amplitude estimate gives the maximum
3x3 this has a small workload moreover jikelihood form /2/

the use of the Taylor series reduces

the bearing estimation task from a Amax = Const -

tl U:Zt)'
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H H -1H
ZXt (1 - 2(z'2) 2 )Xt (4) issue which is returned to later.

This result must be further maximised Subgspace MUSIC method.
over the ranges of bearings of the two
sources and normally this is a wvery
difficult non-linear problem, especiall
at low SNR's /2,3/.

At this point it is necessary to deter-
9ine the source parameters from the
statistic. A simple Maximum likely-
hood estimator (MLE) has not yet been
found and the following modification

Taylor Series A: roximatioﬁ.
Y PP of the MUSIC algorithm is suggested

The likelihood (4) can be linearised though it will show greater parameter
by using a Taylor series approximation estimate variance than a MLE.

in the neighbourhood of the maximum Statistical theory indicates that only
likelihood point, this is an establishedthe MLE can approach the Cramer-Rao
statistical technique e.g. Cox /4/. lower bound and if another, ostensibly
Thus if a source lies at bearing 6+8 different, estimator approaches the

we write . bound then it too is a MLE and will
S(6+8) = 8(8) + & S(8) give identical estimates sample by

sample. Since any invertible function
of a sufficient statistic is also
sufficient we will begin by considering
A S . . - " X
where D = [S,S, §~S ] , with S = 3S/06 the projection of the estimated array
A 2T covariance matrix R onto the subspace

20
+%-5s (6) = DA

tc. d A= (1 . 5
etc. and 4= (1,6,8) ' (5) spanned by the derivative vectors D.
We now have ‘ . -
7 = D(A A) = Dy (6) Create an orthonormalised version of D
17 72 by postmultiplying by an upper triang-
U = DyA ‘ ular matrix T: Q=DT such tha& Q Q=I3,5

The reduced rank matrix B=QQ RQQ is

and substituting intc (3) obtain i
J the required data projection and desired

A = Const - Z|] xtH 2 4 z|lpyal|? -2Re  sufficient statistic. To apply the
H MUSIC or Pisarenko method for the two
LY pR (7 sources the smallest eigenvector of B
where Y, = D'X, is the three element would be found, say U, and we would
statistic. The likelihood has factored® onine s(6)"u|" for minima : each
into the form corresponding to a source. This
T process can be transformed into an
L= T f(Xt). g (¥, YAt) (8) algebraic_polynomial domain as follows.
1 ! Wwrite $(8) = AMDY from (5) and consider
f being a function only of the data, the 3x3 matrix C:QHRQ with smallest
and g being a function only of the eigenvector V. The matrices B and C
statistic and the parameters and so are orthogonally similar and share the
the statistic is sufficient /4/ for same eigenvalues, thus V is related to
the parameters of the Taylor series. U by U=QV and the cost for the Pisarenko
The question of the accuracy of method becomes
representation of the signals by this
series is a separate non-statistical !s(e)Hu| = |AHDHQv| (9)
106
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H
Writing the vector D QV=F we hgve the
equivalent polynomial fo+6fl+6 f2.

This polynomial can be set to zero by
equating § to its roots, this deter-.
mine the directions §,. This stage
involves some approximation as the
roots do not lie exactly on the real
axis in the presence of noise so the
result cannot be a MLE, however the
accuracy is very good as the simul-
ations below show. The matrix C is
estimated by transforming the incoming
vector samples via the matrix Q, thus
the three term statistic from the
antenna is the vector Gt=Q Xt and C is
estimated as

T
G GH. The first two numbers in G
ltt t

see Fig. 1) are equivalent to a radar
monopulse antenna (or split-beam array)

vector samples are taken. The graph
shows the estimated source separation
vs. true separation. Clearly there

is little significant bias until the
sources .approach one beamwidth separ-
ation and useable results are obtained
out to three beamwidths separation.
Beyond this catastrophic failure occurs
even with no noise, while significant
excess variance is expected if the
source separation exceeds 1,5 beamwidths.
This result is perfectly satisfactory.

In Fig. 3 two equal power sources are
spaced by either half or a quarter beam-
width, four independent vector samples
are taken to estimate C, and the vari-
ance of the estimated bearings is
plotted as a function of SNR, the solid
line showing the corresponding Cramer-
Rao lower bound /1/. Again this result
is very acceptable; the processor

sum and difference beams while the thirdperformance is virtually optimum.

is a second derivative beam. A two
target monopulse radar of this type
is described by peebles /6/,/7/ though
his noise sources are introduced beam

4. Conclusions.

The tests on this linearised maximum

by beam in a way appropriate for separat%ikelihOOd estimation procedure have

dish feeds and the technique is not
quite equivalent to the present noise-
less beamforming with individual noises
introduced element by element.

3. Numerical Tests.

The algorithm has been tested on an 18
element line array with uniform spacing
for simplicity. A very similar
algorithm has been shown to operate on
non-uniform arrays, e.g. circular in a
related coherent source application /8/
using single samples and this feature
of its cperation is not in doubt.

The present teésts demonstrate the bias
introduced by the Taylor series expan-
sion and test the parameter estimation
variance against the Cramer-Raoc lower
bound.

In fig. 2 two equal power uncorrelated
sources are placed symmetrically about
broadside, there is no noise, and two

Proc.l.O.A. Vol 7 Part 4 (1985)

shown it to be numerically efficient
and close to statistical optimality for
close targets. Using it makes it
feasible to apply approximate MLE to
large arrays of arbitrary shape without
incurring excessive computation cost
since every array reduces to a three
dimensional problem. The restriction
to close targets must be observed and
deleterious effects such as bias and
excess variance are observed if the
spacing is greater than one beamwidth.
The way to operate this system in an
unknown environment involves sequential
decisions. First do a conventional
beam scan to determine roughly what the
angular spectrum is like. If only

one peak is observed, possibly contain-
ing two unresolved targets, then the
steering vectors D are expressed as a
Taylor series about the centre of the
peak and an attempt to resolve two
sources in it is made. If there are
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two peaks resolved in the conventional 9.

J.E.Hudson "Fitting sinusoids to

scan, with greater than one beamwidth sampled data using a hybrid S/Z plane

spacing, then they may be taken as the moment method".

two required sources, or each may be
individually probed with the high
resolution system while steering a
null to the other.
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Fig.2 Noise-free estimate bias
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Fig.3 Estimate variance
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