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1. Introduction.

The properties and limitations of the conventional beamformer are of

course well known and need no amplification here. The resolution of the

conventional beamformer is limited mainly by the size of its sensor array

in wavelengths. Suggestions have been made from time to time that the

beamwidth of an array can be reduced by adopting some form of super-

directive taper function, but such efforts have normally been thwarted by

the presence of errors of gain and placement in the sensors. The sidelobe

levels of an array can also be reduced by using special fixed taper

functions. The Chebyshev taper for example produces arbitrarily small

uniform amplitude sidelobes but only at the cost of increasing the beam-

width. Such fixed taper functions are effected by sensor errors which

increase the mean sidelobe leVel. For example it is probably almost im-

possible to achieve an rms. sidelobe level of -40 dB unless the array has

50 to 100 elements.

Adaptive processors can improve resolution and reduce sidelobe levels

at the same timefl'z’a) The purpose of this paper is to analyse in a

simple fashion the limits of performance for the adaptive processor so that

it can be compared quantitatively to its non-adaptive counterpart.

Adaptive processors are characterised by requiring signal measurements

for a finite time interval in the signal environment. This time is used

to obtain parameters of the statistics of the signal field and until stable

measurements are obtained the adaptive system is not in equilibrium. It is

assumed here that equilibrium has been attained and the processor is in an

'optimal' state. It is now shown that under certain conditions this state

is easily predicted if the signal field is known and simple equations can

predict the nature of the 'optimal' solution.

2. Adaptive Processor Operation

Only one type of adaptive processor is considered here. This is the

Least Mean Square or LMS system. In hardware it consists, as shown in

Fig. l, of a sensor array detecting a time varying signal vector £(t),

a vector of coefficients fl, and an adder which produces the output

signal y(t).

The criterion of optimality of the LMS processor is very simpleyit

is that its mean-square output <y2(t)> is as small as possible. This is

affected by variation of the weight vector E and in an adaptive processor



 

there exist some algorithm which automatically seeks this state and main-

tains it. The LMS processor must be prevented from conVerging to the

undesirable (though logical) state of having all weight coefficients of

zero. In order to 'look' at a broadside signal for example we require

constant gain in that direction and this is achieved by introducing the

constraint g w(k) = constant, where the w(k), k=l,2,..N are the weights.

k=l

This constraint over-rides the LMS algorithm.

In vector form we can introduce a broadside signal vector §o={1,l,l,..l}T

which represents a broadside unity amplitude plane wave, andcan constrain

the gain in the broadside direction to be unity by the linear equation

wTs = 1.*
o ,

The presence of the constraint does not impair the ability of the

system to minimise its output power due to signals which are not near

broadside, and in general we expect it to steer nulls toward such sources

by variation of w in the manner now analysed. It should be noted at this

point that if we require to 'look' in a different direction than broadside

this is most easily done by phasing the signals from the sensor array by

a beam switching technique.

The conventional weight vector for the system i.e. its starting state,

is the 'matched filter' vector EC which is equal to $60 for an 'H' sensor

array. The system can be considered to adapt by addition of a 'difference'

vector 3 to we. We have W = Wc + m. Because of the constraint (Wb+w)TS° = l,

and since WESo = 1 then JFSO = 0 and, in consequence, mTwc= 0. Therefore

the difference vector m is orthogonal to the conventional weight vector we.

When some arbitrary signal vector E is input to the system, and

adaptation is complete, the vector u is such that WTS = (wc +m )TS is

minimum in the mean square sense.

3. Effects of Sensor Error

 

We can now analyse the effects of constant errors in the sensors upon

the broadside gain of the adaptive system. Let so be the broadside

accustic signal vector representing the signal but now imagine that, owing

to errors in the sensors, the system perceives an electrical signal

vector S which is different to So by the addition of an error vector gy

s = so + E. In reality so is time varying, and the errors are a multi-

plicative effect but if 50 is assumed constant, the result is still valid.

* xT = complex conjugate transpose of X   



 

1.3
We also assume that E is orthogonal to So (and hence WC) or in other words

the errors do not change the look direction gain. This does not affect

the generality of the argument.

The constraint is not now sufficient to ensure that the adaptive system

gain in the broadside direction remains constant. In fact the system will

seek a difference vector such that

y = (we + m)T(So + E) is minimised. If this expression is expanded,

noting that wTs = 1, and HT}: = wTS = 0, we obtain y =wTs + WTE + st
c O C O C C

T
+ wTE = l + w E

Using the Schwartz inequality for vectors we can then write,

5 ‘2T T T
l - (m wETE) S y s l + (m mE E)

and because of the nature of the optimality criterion the gain will usually

lie near the lower limit. Suppose that y must not be less than ymin. Then

T 2 T
s -m m (1 ymin) /E E

The quantity ETE can be related to the variance of the sensor gains a

(averaged on the array only, and with nominal sensor gain of unity), by

ETE = N02. Thus ETE will be equal to some constant which can be esti-

mated by measurement. For 3.50 rms. phase error and 7% amplitude error

we would have 02 = 10-2.

The super—gain ratio of the weight vector is introduced and defined as

'mean square weight value'/'mean square conventional weight value'

'r T= w w/wTw = 1 + w w/WTW = 1 + NwTw (1.va = 1/N)
C C C c C

It is easy to show that wTw/wcwc < l + (l - ymin)2/ 02 to maintain the

gain criterion. For the Sensor errors quoted and with ymin = 0.707

the super gain ratio would have to be less than 9.5.

4. Two Target Resolution

we now turn to the question of resolving two discrete noise sources by

means of three adaptive processors. Referring to Fig. 2, system 1 steers

a beam bl directly at t system 3 steers a beam directly at t , while;

system 2 is steered to the centre of the sources. The steering iSYdone by

the phasing technique mentioned earlier. The three systems however operate

completely independently. The supergain ratio of each processor is bound-

ed as described above.

If the sources are to be resolved unambiguously, the central beam

b2 must output less power than either b1 or b3 so that we see a dip

between the noises. If one of the sources is very weak, the output of beam

b2 must be correspondingly weaker to maintain the dip. The only reasonable

 



 

output power is in fact zero. Thus in beam b2 we require to form two nulls

in the direction of sources t1 and t2 as shown in Fig. 3. To form two

nulls like this demands a certain supergain ratio in the weight vector

for beam b2. It can be calculated as,

l + d(26)

 

SGR = 2

l + d(29) - 2d (9)

in which d(e) is the conventional system gain for beam b2 for each of

the sources t1 and t2, and d(26) is the gain at twice the spatial frequency.

This function is plotted in Fig. 4 for a sintxllx pattern.

Since the supergain ratio has been bounded the nulls cannot be formed

too close to the look direction of b2. Consequently the angular

separation of sources t1 and t2 must exceed some lower limit if they are

to be resolved as indicated. Fig. 5 plots this angle as a function of

sensor rms. error (1 = angle of first zeroes of conventional pattern).

It is seen that the resolution of the adaptive beamformer is limited

and only if the sensor errors become vanishingly small is there a large

improvement in resolution. Note also that a best case target situation

has been chosen. If there were more than two sources, the supergain

b
ratio of the beamformer ( 2) would have to increase to null themall and

its resolution would decline.

5. Sidelobe Levels

Complete analysis of the side lobe levels of an adaptive processor

is not possible here. The results are simply quoted as follows. If the

number of discrete sources illuminating the array is small, then those

sources which lie outside the regiOn of the look direction are nulled

until their output is below the level of any incoherent noise at the

processor output regardless of sensor errors. Essentially the contribution

of discrete interferences to the system output is zero.

This simple result is complicated in one implementation of the system

by the presence of an A/D converter in the signal path from the sensors.

This generates a quantisation noise. In order to ensure efficient oper-

ation of the A/D converter it may be preceded by an AGC amplifier whose

purpose it is to maintain the rms. signal input to the converter at a

fairly constant level (see Fig. 6). The combined effect is rather

unfortunate. In the presence of a strong interference the gain of the AGC

amplifier is reduced and with it the level of a weak signal which may be

present. Eventually the signal is swamped by the quantisation noise if

 



 

1.3
the interference is strong enough. In other words, the signal input to the

A/D converter becomes smaller than the least significant bit at the binary

output.

If one channel only is considered we get the following results for

the ratio of Interference power/Signal power at the sensor (Pi/PS)

The aGC amplifier holds the converter input rms voltage at % of the

clipping level, and 2's compliment binary representation is assumed. The

(P )
signal power 5 is equated to the guantisation noise power.

1 23 '
(Pi/PS 3.2 )

B (no. bits) Pi/PS (dB.)

4 19

31

8 43

lo 55

The processor itself improves the situation by 10 logtN) dB.

If full advantage is to be taken of the interference reducing

capability of an adaptive processor we mustprovide high grade signal

channels as shown above.
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