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ABSTRACT
orthogonal beamforming is the name of certain high-resolution methods for
estimating the spectra of a wave field received by an array of sensors. The me-
thods use the eigenvalues and eigenvectors of the spectral matrix of the sensor
cutputs. The problem is to predict the behavior of such methods when only an
estimate of the matrix is known. The sensor ocutputs may consist of sensor noise,
ambient noise and noise from a finite set of discrete sources. The properties
of the eigensystem of the spectral matrix in the case of weak ambient noise
motivate the methods of orthogonal beamforming, for example Pisarenko's non—
linear peak estimates and the projection estimates of Owsley and Liggett. If the
spectral matrix is estimated by one of the classical methods, some asymptotic
distributicnal properties of the matrix estimate and its elgensystem are well
known. They can be used to determine asymptotic expressions, e.g. for the first
and second mcments of the peak estimators and to approximate the distributions.
The parameters, however, cannot be calculated in applications since the eigen-
system of the exact spectral matrix is regquired. Therefore, we recently de-
veloped bounds for the deviation of the peak estimates which only use weak
knowledge about the matrix, We applied some results on perturbations of hermitian
operators. The asymptotic behavior of the bounds for the projection estimator
is investigated and possibilities for their estimation are indicated. Finally,
we report about extensive simulations with random matrices to evaluate the new
bounds. As a result, we found that the projection estimator behaves stable and
there are tight bounds if the eigenvalues of interest are sufficiently separated
frem the rest. ‘

INTRODUCTION

Since more than ten years, high-resclution spectral estimation methods have
been used for passive array processing in seismic and sonar applications. The
methods take advantage of special propagation models of the wavefield. In parti-
cular, the surveillance of discrete sources motivates the use of coherent waves,
for example plane waves for farfield scurces. The spectral matrix of the sensor
outputs, which are modeled by a stationary stochastic process, as the response
to these waves has a simple structure. For estimating the propagation model, an
analysis of the structure is usually done via an analysis of the eigenvalues and
orthogonal eigenvectors of the spectral matrix which is assumed t¢ be well esti-

-mated [5,11-16]. These methods are called orthogonal beamforming. In [11,12,14,
16,18], possibilities are investigated for a direct identification of the
steering vectors correspending to the wavefronts incident from the discrete sour-
ces. We suppose that the propagation model is known except for some parameters,
for example directions or wavenumbers, and we are interested in the behavior of
diagrams over these parameters. The diagrams are interpreted like power spectra
and can be campared with the corresponding classical beamforming spectra. We
pick up well known methods [5,13,15] which we call peak estimates and try to.
predict their behavior by means of the behavior of the eigensystem of the esti-
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mated spectral matrix. The asymptotic statistical behavior of both, Pisarerko's
nonlinear estimator [15] and Capon's high-resolution method [5], is known [6,15].
We show that of the estimators in [13,14]. Frequently in applications, the
asymptotic expressions, e.g. for the moments cannot be calculated since the true
spectral matrix and its eigensystem have to be known. We therefore developed
bounds for deviation of the peak estimates computed from the estimated matrix to
the best possible computed from the exact matrix. These bounds require less
knowledge about the unknown matrikx and seem to be more useful, We found them by
application of results on perturbation of hermitian operaters in {7]. The behaviocr
of the bounds and a possibility for an estimation are discussed. Numerical experi-
mente with random hermitian matrices were executed to show how good in the mean
the bounds predict the deviations.

We remark that parts of the results described in this paper are contained
in a technical report [2] and are summarized in [3].

The author is grateful to FGAN, 852¢ Wachtberg-Werthhoven, W. Germany, for
partial support of the work presented herein. The author was assigned to FGAN in
the period 1978 - 1980,

MODEL AND ESTIMATION OF SPECTRAL MATRICES

The array may consist of N identical omnidirectional sensors located at
peints x_ (n=0,...,N-1). The sensors have low pass character, and the sensor out-
puts are sampled in parallel with a period T. The mcdel for the sensor outputs is
a discrete stationary stochastic vectcr process with N components with expectation
zero. The process is described by the spectral matrix F(}) =(fnj(A)), where fnj

is the cross spectrum of the components from sensors at X and xj,A=wT and w is

a frequency in cycles/s. Let us suppose similar to [12] that the process consists
of three independent parts, nearfield noise, farfield noise or ambient noise and
signals from K discrete sources in the farfield. Then, F is the sum of three non-
negative hermitian matrices, ‘

(1) F () =F_(A) +F, (A +F_(X).

Fn corresponds to nearfield noise which is in the simplest case independent
sensor noise such that Fn = £ I, where f_is the spectrum of sensor noise and I
the unit matrix, 1-"a is due to ambient nofse and has a representation

(2) F (A) = ffa(A.BJDB(l) Dg{r)as,

where D, is the steering column vector for waves described by a parameter (or
parameter vector) 6, the bar denotes transpose and conjugate-complex operation and
fa(l,.) is assumed to be a smooth spectrum. If we presume plane waves of a known
velocity v of propation, ambient noise can be interpreted as a homogeneocus random
field and the parameters are bearing and elevation, D, is the direction vector with
elements expl{iwu(8)x_/v) (n=o0,...,N-1) and -u(8) is & unit vector pointing in the
direction of propagation of the wave. Finally, F_ describes the signals from K
sources with parameters 6 ,...,0 —i‘ If P is the matrix with column vectors Dek
(k=0,...,K-1) and G the KxK-matrfx of cross spectra of signals received at the
origin, then L :

(3) Fq(A) = P(MGMP(N).

The rank of Fs is not greater than K which is the essential property. Similar
signal models are also used in more general propagation situations, cf. [2]. since
Fs has rank(F ) positive eigenvalues, the corresponding orthogonal eigenvectors
are analysed %o determine the steering vectors % and ‘the matrix G. Papers [12,14,
18] are references. We mention that a solution if not unique except for special
cases.
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'

Because of the noise ccmponents, the eigensystem of F cannot be used for a
possible analysis as indicated above. We therefore assume either that we have
some a priori knowledge about the coherence structure of noise and transform the
data or that we can remove the nearfield component as described in [12]. Then,
we investigate our problem with the Bssumption Fn=nt.

The spectral matrix F is unknown in applications and can be estimated from
a long piece of the sampled outputs of all sensors if stationarity is assumed.
The more difficult problem in the case of local stationarity is investigated in
[11]. The estimate F has then to be analysed for an inference of the signal
parameters 6, etc. We suppose that F is determined by one of the classical me-
thods, namely by the mean of periodogram matrices of succeeding streches of data
or by smoothing the periodogram matrix of the data over frequencies. It is well
known [4] that under some regularity conditions asymptotically, for large time-
bandwidth products and small bandwidthes of the windows, the estimator F is nor-
mally distributed and its elements can be written

- w
(4) Enj(A) J Mg &IE s 30

Herein, w_ is a 2u-periodic function depending on the tapering of the data and
in case of the smoothing window, and it behaves similar to the periodig version
of Dirac's & as the bandwidth parameter B approaches to zero. Z =Z are
zero-mean random variables with covariances nJ in

(A=-k)dk + zn

! [ c -
(5) Cov(zZ 4.2 ,) Benk M Ey 0

if X is not a multiple of 7.The number c depends on the method, and BM is the
time-bandwidth preduct. In connection with the problems discussed below, it is
more convenient to approximate the distribution of (BM/c) F by a complex Wishart
distribution with (BM/c) degrees of freedom and parameter matrix F. With respect
to an analysis of F, the smoothing effect in (4) is most problematic. We there-
fore have to controcl the bias carefully. One possibility is to choose a suitable
frequency A. We assume to have done this and shall omit the notation of X
mostly.

PEAK ESTIMATES

If the signals are incoherent, their spectral matrix F_ can be described si-
milar to (2) with a discrete spectrum fS(O) which has §-contributions for ©=0
and wights proportional to the value of the spectrum of the signal k. For estima-
ting the shape of the sum fa(8)+fs{a) the diagram
(6) g(8) = neﬁne
is used, sometimes modified by tapering the elements of Dy, which corresponds to
classical beamforming. The properties of this estimator in connection with the
model of F are evident. The resolution of the method is limited by the geometry
of the sensor field. If the steering vectors Dg, arxe well separated in this sense
and there is no strong coherence between signals, the diagram will show a peak
for §=6_. The influence of sensor noise is charactarized by an additional bias ’

" which is constant for normalized steering vectors.

) For improving the resolution, the peak estimators of orthogonal beamforming
‘were introduced. They are functions of quadratic forms similar to £6), where F-
is replaced by a matrix which is a function of the elgensystem of F. Let voau P
...ZvN_l be the eigenvalues and vo,vl,...,vN_l the corresponding orthonormal

eigenvectors of F. Pisarenko's nonlinear peak estimate [15] uses a monotonic

function h(x)>0 for x>0 with inverse n ! and is

16.3



Proceedings of the Institute of Acoustics ‘Spectral Analysis and its Use in
Underwater Acoustics’: Underwater Acoustics Group Conference, Imperial
_ College, London, 29-30 April 1982

-l = N-L
(7) 8,(8) =h T(DpI, hiv)V,V Dg)-

jie
For_h{x) = x, we have (6} since the sum in (6) is then the dyadic decomposition
of F. If we use h (x) = 1/x and F is the mean of periocdogram matrices, we obtain

capon's high-resolution estimate [5].Another class we call Owsley estimates is
determined by a real interval which contains the eigenvalues VoreeesVge First,
we have the diagram

— = o8 - s
(8) gi(e) = DB(Ej=rvjvj]De-— Ej=r
where the sum in brackets is the projector into the linear space spanned by the
orthonormal vectors V ,...,V_. A modification is to use the corresponding part
of the dyadic decomposition 3f F,

-7 (7S v _ 75 = 2

(9) §,(8) = DB(Zj=rvjVjvj)DB = zj=ruj|nevj| .
Ff the eigenvalues of interest are either the smallest or the largest, we c¢an
consider (8) and (9) as limiting cases of h(go(e)). In [11,13].@1(8) is used
for r=s=o which means the largest eigenvalue. Other authors used the smallest
ones. The use of the smallest eigenvalues has the effect that the diagrams show

valleys instead of peaks for 6= 6, . Therefore, some authors [16,9] apply 1/@1(3).

D 2

ASYMPTOTIC BEHAVIOR

Since the following arguments do not depend on the parameter &, its nota-
tion is omitted. We now discuss the asymptotic behavior of the diagrams (6) to
(9) if P behaves asymptotically as deseribed above. Starting from the asymptotic
complex Wishart distribution, the results of Capon and Goodman [6] can be
applied. Then we have that classical beamforming § is asymptotically distribu-
ted as (DFD)c/(2BM)x§Bch. On the same way, one cbtains for Capon's method that

==-1_.-1 , --1_.-1
go =.(DF D) behaves asymptotically as (DF "D) c/(2BM)x%(BM/C_N+1},where we

have assumed that F has full rank and BM/c>N-1. Pisarenko [15] gives an argument
that the estimator (7) is asymptotically normally distributed.

In the following we shall describe the behavior of the diagrams §.(9) by
means of the properties of the eigenvalues and eigenvectors of F. Theorems 92.4.1
tc 9.4.3 in [4] state that under some regularity conditions and if the eigen-
values of F are distinct, the eigenvalues and corresponding eigenvectors Uo,....
v Ve eiV are asymptotically as BM*> and B + O independently and normally
aYetriButed vhriables with '

(lo) ave v, * varv. = ulc/(BM)
37 Yy 17 d

-+ > . | -2, =
Ave Vj Uj; Cov(vj,vj) = c/(BM)Zl*jujul(uj —ul} Ul 1°
The notations Ave etc. mean expected values derived in a term by term manner from
a Taylor expansion, and uo>u >...>uN_1 are the eigenvalues and U_,...,U ', the
corresponding eigenvectors o% F. We assume that the biases of “j and Vj are small

fle

in comparison to variance terms. As a consequence, the variables |3Vj|2 are

asymptotically distributed as U§f2x2(2|3b.]2/0%), i.e. except for scaling non-
central chi-squared with 2 ] J -

Av'é'iﬁvjlz = cjz.+iEUj|2, Va;iDlez 2 c§(02+2|_ﬁuj|2).
2 _ var(DV.}) = -u.)-2}pu. |2

o = Var (DV,) o/ (BM)I Iy sughy (Hy=¥)) fou_ |2.
Now, it is simple to express the corresponding mcments of the diagrams gl and 52.
For (B), we find s

(11) Avdg; = gy+I4_,0%,
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where g, denotes the best possible diagram which is defined go that in the defi-
nition of qi the eigensystem of F is replaced by that of P, for example

12y va¥ g, = 28° o2|Duj)2.
(12) va¥ §, = 25, o%|oyy N

We have cmitted terms (BM) for k>1. The moments of (8) are
(13) Aveg,
(14) Var§2

9, = I r|DU.| ,

s 2
g§+zj;r_"'_ aj; , _
zj#ujlnuj! (2aj+c/(gm) IDUjI ).

A computation of the moments of §_ in a similar way does not result in a good+
approxgpatiOn since we did not taﬁe into account the first order errcrs in Ave uj
and Ave V.. Therefore, we note the following expression which can be obtained on
the same aay as shown in [15],

v 2 . . =2.N-1 _ 2 42 1= |2

(15) ave(§_-g )" = c/(BMIh'(g) Ej,l:oujulth(uj) hiuy)) A=) Euji IDull ]
where h' is the first derivative of h which has to be a holaomorphic function in the
right half plane and (h(uj)-h(ul))/(uj-ul) is replaced by h'(uj) for uj= LIE

In the last paragraph, we presumed distinct -eigenvalues of F, If some eigen-
values are equal, for example in model (1) the smallest eigenvalues when F_ = 0
and Fn = nt, the corresponding elgenvectors V, of F have not the asymptotic

. properties (lo). However, in Pisarenko's arguménts this assumption is not used,
and (15) can be further applied. As indicated in the last chapter, (8) and (9) can
be approximted by h(§ ) if for example the smallest eigenvalues are of interest
and h is a suitable holomorphic function. Then, we obtain asymptotic expressions
for the mean sguare errors similar to the right-hand side of (15) except for the
factor h'{g_)—°. The problem in this connection is that we have to know which’
eigenvalues are egual and then to choose the integers r and s in (8) and (9) ap-
propriatly.When for example in (1) F =0and F_ = f_ I, we have to estimate the
rank of F . In [11], a solution for his case i} given. For testing the equality
of eigenvalues, we refer to the statistical literature e.g. [10];[17]. If u =
oo eSUg and r and 5 are extremum, the interesting point is the asymptotic beﬁavior

of £§=r]vai2 = D(E§=rvjvj)n. One can approach this by use of papers (11, [8].

BOUNDS

Since in applications the exact spectral matrix F and its eigensystem are
unknown, the asymptotic expressions (11) to (15) cannot be evaluated. What we can
say in a concrete situation is that g, and §, tend to. overestimate g and 9, and
that biases and variances of the §, are of order (BMI"* as BM», We tﬁerefore de-
veloped bounds for the deviations
(16) 4, = 18,-9,| |
from the peak estimate gi to the best possible diagrans 9, which regquire less
information about F.

We first investigate di =']DA1D] for i = 1,2, where Al = Qrs_Prs'
8 e s

= - a T _ 53 0 _ : .
Qrs—lzjnrvjvj' P Zj=rUjUj and A, zjﬁr(Yijj uijj) are hermitian matrices
Using the vector norm i DH = (Eb)rlz, we have for 1 = 1,2
(17 di s fi offts, . e

8, & syp di(e)/h De" 2 g (max eigenvalue (A,A.)) = || Ai”l'
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Thig bound cannot be improved in general. The matrix norm ||A.H1 is unitary-
invariant, i.e. || BAiC”1 = | Ai”l for unitary matrices B and C. Every such matrix

norm “ Ai“ with ” Ai“l é“-AiH can be used to bound Gi' for exampie the square
norm i A, [l = (er (a2, 0)1/2,

As shown in [2], bounds for || A, || were found by application of Davis' and
Kahan's results on weak perturbatiofi of hermitian operators [7]:
Assuming 2{s-r+1)&N and the existence of a number A»Q so that
- the elgenvalues v 2...ng_1 of F satisfy Us-vs+laﬁ if s<N=-1 and

v .-v 24 if r>0,°
r-1 r

- the eigenvalues uoz...

zuN_l of F satisfy us-vSSA/2 and ur-uréﬁ/2,.

-l H||1 $ A/2, where H = F-F is called perturbation,
then we have

sy || alls lio o~p s 2" lalse
and for | H1 the more exact bound
(a9) il a,ll s 2 1/2(1-(1-4|| H||§,-"A2)14/2)1/2.

1/2

Consequently, if F is a good estimate of F and if_the eigenvalues of interest
are well separated from the other eigenvalues of F by a number A>0O which we know,
then 4/ Dli 2 is bounded by the right-hand sides of (18) and (19). In model (1),
the K largest eigenvalues are well separated from the other ones if the weakest
signal has sufficient signal-to-noise ratio, the coherence between the sources
is low and there is only weak coherent noise.

To find bhounds for dz, we write
i A, 0 = 01 25_ (v, (0. .-P,, -
RS RN SRS uJ)ij}H
if the u. are distinct and obtain
T s
2 . . A U | I UL ).
(20 ila, il & E5_ vyl og-posil fvg-usD
Similarly, if BSeee=Hoy
ania, il s 2 vou vy e o8l
If we bound lvj-ujISH Hl 1S||H||and use (18) or (19) we get bounds for ||A2H,
e.g. by (19) and (20)
i i - S ' i _ _ 2
(22) || &, llp s Ii_ (li milp4vy2 0= allzllys 657079,

where Aj is the distance from vj to the nearest eigenvalue of F. As known, we may

-1/2 1/2,1/2

assume that with prcbability one all Aj>0 if (BM)/c>N and zerc is ncot an
eigenvalue cf F.

In analogy, we can obtain bounds for

_ _ 2 _ N-1 _
4 = |h(g) h(go)l s o |l ||Ah]|,_hh I (V)04 h(u;)Py40

when in (20) and (21) vy is replaced by h (v,) etc. If h is specified, we find '
bounds for ]h(vj)—h(uj)] depending on h, v, and [ g]] which results in bounds

S o DR : ]
for || A . Finally, d_ = [h " (h(§ ))-h (h(g_))| is treated like |h(v,)-hluy) ]..

As an example, in [3] is noted the corresponding bound for Capon's method.

Space doesn't allow to go into the details. We only remark that the bounds com-
posed in this way are not tight in contast to (18). Possibly, an application of
the approximation method in the proof of Theorem 1 in [15] gives better bounds. -
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The only unknowns of the tounds (18), (19) and (22) are the norms of
H = F-F. The behavior of these norms and possibilities for their estimation are
of interest in applications. First, we apply Theorem 7.7.3 in [4]) which_states
that under some qonditions asymptotically for BM#=and B+0 the elements £ __(A) of
F()) satisfy nJ

-~ - -1/2
sgplfnj (M) -EE (M) | = o((BM/In(1/B)) /

)

with probability 1. Since we can write

syplEE  0-£ 0| = o(m) +o((am 1y,

we gbtain agymptotically _
il 1;v||1 s |'m ||r=1q = Q(B) + O((BM/1n(1/B)) )

with probability 1 and error terms being uniform in A. In ccmparison with this
result, we know

sl ull, s =l 8l 5 ® Hiq) = 0(B,)+ O((BM)

The estimation of ||B || and especially of la |i
from F is not yet solved satisfactory. For |f}|Lq = (I
r

is the crude estimate {chM)lfztrtﬁj, Here, we have used that F is an estimate
{4) with low bias and covariance (5).

1/2

1/2 -1/2)

in applications from data or
| -£ |2}1/2 there
nmm nm

NUMERICAL EXPERIMENTS

For evaluating the bounds (19) and (22), pumerical experiments were executed
by means of an FPS array processor 120 B. The model {1) was used for a line array
with N=8,12,16 sensors having a mutual distance of a half wavelength. We used two
noise situations a) sensor noise and isotropic ambient noise of the same power,
b} ambieng noise alone and K=1,2 inccherent signal sources with bearings 6 _=lo
and 6,=40 and powers g =1 and g , =0.5, respectively. (Our problem was not to
inveséigate the resoluti®n of the methods.) For signal-to-noise ratios (S/N) =
«,6,3,0-3,-6,-10dB, the best possible diagrams gl(e) and g,{6) showed the peaks
correctly as decreasing (5/N) up to -6dB. We invéstigated %he behaviors of the
deviations only up :to this value, )

Estimates §=(§ ) were simulated by use of (4) assuming no bias and a simpli-
fied structure of ?Adependent, zero-mean triangular distributed pseudc-random
variables an in a real representation with variances as given by {5). For

scaling parameters a=(6c{(BM»1/2 = .o0l,.1;.2,.3,.5,.7,1.0,1.3 and each possible

matrix F their estimates F were computed, then the diagrams g, (6) and gi(e)
(1i=1,2), the numbers 61 and §. as global deviations and finaily the bounds (19)
and (22). For comparing the d%fferent situations, we asked for the factor by
which a bound is greater than the corresponding glchal deviation. We found that
in comparable situations in the mean the bound (19) is 2 to 3 times greater than
the global deviation 61 and {22) about 1.5 KM-times greater- than 62.

Concluding, if there is a good estimate of [|H|| = || F-F|| and if the eigen-
values of interest are well separated from the cther eigenvalues of ?, then the
bounds (18) and (19) give good tools to predict the behavior of Owsley's pro-

- jection estimate §1. The bound {22) seems to be crude and should be improved.
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