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ABSTRACT

orthogonal beamforming is the name of certain high-resolution methods for

estimating the spectra of a wave field received by an array of sensors. The me~

thods use the eigenvalues and eigenvectors of the spectral matrix of the sensor

outputs. The problem is to predict the behavior of such methods when only an

estimate of the matrix is known. The sensor outputs may consist of sensor noise,

ambient noise and noise from a finite set of discrete sources. The properties

of the eigensystem of the spectral matrix in the case of weak ambient noise

motivate the methods of orthogonal beamforming, for example Pisarenko's non—

linear peak estimates and the projection estimates of Owsley and Liggett. If the

spectral matrix is estimated by one of the classical methods, some asymptotic

distributional properties of the matrix estimate and its eigensystem are well

known. They can be used to determine asymptotic expressions, e.g. for the first

and second moments of the peak estimators and to approximate the distributions.

The parameters, however, cannot be calculated in applications since the eigen—

system of the exact spectral matrix is required. Therefore, we recently de-

veloped bounds for the deviation of the peak estimates which only use weak

knowledge about the matrix. We applied some results on perturbations of hermitian

operators. The asymptotic behavior of the bounds for the projection estimator

is investigated and possibilities for their estimation are indicated. Finally,

we report about extensive simulations with random matrices to evaluate the new

bounds. As a result, we found that the projection estimator behaves stable and

there are tight bounds if the eigenvalues of interest are sufficiently separated

from the rest. '

INTRODUCTION

Since more than ten years, high-resolution spectral estimation methods have

been used for passive array processing in seismic and sonar applications. The

methods take advantage of special propagation models of the wavefield. In parti—

cular, the surveillance of discrete sources motivates the use of coherent waves,

for example plane waves for farfield sources. The spectral matrix of the sensor

outputs, which are modeled by a stationary stochastic process, as the response

to these waves has a simple structure. For estimating the propagation model, an

analysis of the structure is usually done via an analysis of the eigenvalues and

orthogonal eigenvectors of the spectral matrix which is assumed to be well esti-

-mated [5.11-16]. These methods are called orthogonal beamforming. In [11,12,14,
16,18], possibilities are investigated for a direct identification of the

steering vectors corresponding to the wavefronts incident from the discrete sour-

ces. We suppose that the propagation model is known except for some parameters,

for example directions or wavenumbers, and we are interested in the behavior of

diagrams over these parameters. The diagrams are interpreted like power spectra

and can be compared with the corresponding classical beamforming spectra. We

pick up wellknown methods [5,13,15] which we call peak estimates and try to.

predict their behavior by meansof the behavior of the eigensystem of the esti-
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mated spectral matrix. The asymptotic statistical behavior of both, Pisarenko's

nonlinear estimator [15] and Capon's high-resolution method [5], is known [6,15].

We show thatof the estimators in [13,14]. Frequently in applications, the

asymptotic expressions, e.g. for the moments cannot be calculated since the true

spectral matrix and its eigensystem have to be known. We therefore developed

bounds for deviation of the peak estimates computed from the estimated matrix to

the best possible computed from the exact matrix. These bounds require less

knowledge about the unknown matrix and seem to be more useful. We found them by

application of results on perturbation of hermitian operators in [7]. The behavior

of the bounds and a possibility for an estimation are discussed. Numerical experi-

ments with random hermitian matrices were executed to show how good in the mean '

the bounds predict the deviations.

We remark that parts of the results described in this paper are contained

in a technical report [2] and are summarized in [3].

The author is grateful to FGAN, 8520 Wachtberg-Werthhoven, W. Germany, for

partial support of the work presented herein. The author was assigned to FGAN in

the period 1978 — 1980.

MODEL AND ESTIMATION OF SPECTRAL MATRICES

The array may consist of N identical omnidirectional sensors located at

points x (n=0,...,N-1). The sensors have low pass Character, and the sensor out—

puts are sampled in parallel with a period T. The model for the sensor outputs is

a discrete stationary stochastic vector process with Ncomponents with expectation

zero. The process is described by the spectral matrix F(A) =(fnj(A)), where fnj

is the cross spectrum of the components from sensors at xn and xj,k=wT and m is

a frequency in cycles/s. Letus suppose similar to [12] that the process consists

of three independent parts, nearfield noise, farfield noise or ambient noise and
signals from K discrete sources in the farfield. Then, F is the sum of three non—
negative hermitian matrices,

(1) F (A) = Fn(k) + Fa(A) + FS(X).

Fn corresponds to nearfield noise which is in the simplest case independent

sensor noise such that Fn = nt, where f is the spectrum of sensor noise and I

the unit matrix. Fa is due to ambient noise and has a representation

(2) ram = Ifa(A,e)De(M De().)de,

where D6 is the steering column vector for waves described by a parameter (or

parameter vector) 6, the bar denotes transpose and conjugate—complex operation and

fa(A,.) is assumed to be a smooth spectrum. If we presume plane waves of a known

velocity v ofpropation, ambient noise can be interpreted as a homogeneous random

field and the parameters are bearing and elevation, D is the direction vector with

elements exp(imGT§3x /v) (n=o,...,N—1) and -u(6) is a unit vector pointing in the

direction of propaga ion of the wave. Finally, F describes the signals from K

sources with parameters a ,...,e _i. If.P is thesmatrix with column vectors De
(k=0,...,K-1) and G the xxx—matrix of cross spectra of signals received at the
origin, then ___ ’
(3) Fs(l) = P(A)G(A)P(A).
The rank of Fs is not greater than K which is the essential property. Similar
signal models are also used in more general propagation situations, cf. [9]. Since
F5 has rank(F ) positive eigenvalues, the corresponding orthogonal eigenvectors
are analysed to determine the steering vectors % and the matrix G. Papers [12.14,

18] are references. We mention that a solution 1} not unique except for special
cases.
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Because of the noise components, the eigensystem of F cannot be used for a

possible analysis as indicated above. We therefore assume either that we have

some a priori knowledge about the coherence structure of noise and transform the

data or that we can remove thenearfield component as described in [12]. Then,

we investigate our problem with the assumption Fn=nt.

The spectral matrix F is unknown in applications and can be estimated from

a long piece of the sampled outputs of all sensors if stationarity is assumed.

The more difficult problem in the case of local stationarity is investigated in

[11]. The estimate ? has then to be analysed for an inference of the signal

parameters 9k etc. We suppose that § is determined by one of the classical me-

thods, namely by the mean of periodogram matrices of succeeding streches of data

or by smoothing the periodogram matrix of the data over frequencies. It is well

known [4] that under some regularity conditions asymptotically, for large time-

bandwidth products and small bandwidthes of the windows, the estimator F is nor-

mally distributed and its elements can be written

~ I" _(4) Enjm f_1TwB(K)fnj(l max + znj.

Herein. w is a 2fl-periodic function depending on the tapering of the data and

in case of the smoothing window,_and it behaves similar to the periodip version

of Dirac's 5 as the bandwidth parameter 3 approaches to zero. Z = z are

zero-mean random variables with covariances nj in

~c _(5) Cov(an.Zkl) Efifnkil)fj1( A)

if A is not a multiple of fl.The number c depends on the method, and BM is the

time-bandwidth product. In connection with the problems discussed below, it is

more convenient to approximate the distribution of (BM/c)? by a complex wishart

distribution with (BM/c) degrees of freedom and parameter matrix F. With respect

to an analysis of §, the smoothing effect in (4) is most problematic. We there—

fore have to control the bias carefully. One possibility is to choose a suitable

frequency A. We assume to have done this and shall omit the notation of A

mostly.

PEAK ESTIMATES

If the signals are incoherent, their spectral matrix Fs can be described si-

milar to (2) with a discrete spectrum fs(e) which has 6—contributions for 0:9

and wights proportional to the value of the spectrum of the signal k. For est a-

ting the shape of the sum fa(9)+fs(6) the_diagram

(6) 6(6) = Define
is used, sometimes modified by tapering the elements of D8. which corresponds to

classical beamforming. The properties of this estimator in connection with the

model of F are evident. The resolution of the method is limited by the geometry

of the sensor field. If the steering vectors D3 are well separated in this sense

and there is no strong coherence between signals, the diagram will show a peak

for e=e . The influence of sensor noise is characterized by anadditional bias'

which is constant for normalized steering vectors.

For improving the resolution. the peak estimators of orthogonal beamforming

were introduced. They are functions of quadratic forms similar to 16), where F

is replaced by a matrix which is a function of the eigensystem of F. Let vozvlz

...2vN_1 be the eigenvalues and v°,V1,...,vN_1 the corresponding orthonormal

eigenvectors of f. Pisarenko's nonlinear peak estimate [15] uses a monotonic

function h(x)>0 for x>o with inverse h_1 and is
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—1 — N-l , —
(7_) 80(9) — h (Dezj=oh(vj)v.v D).

Jje
ForAh(x) = x, we have (6) since the sum in (6) is then the dyadic decomposition

of F. If we use h (x) = l/x and F is the mean of periodogram matrices, we obtain

Capon's high—resolution estimate [5].Another class we call Owsley estimates is

determined by a real interval which contains the eigenvalues VI....,vs. First,

we have the diagram

' - _ — s - _ s - 2
(8) 91(6) — De(2j=erVjJDe-— Ej=rlpevjl ,

where the sum in brackets is the projector into the linear space spanned by the

orthonormal vectors V ,...,v . A modification is to use the corresponding part

of the dyadic decomposition Sf E,

- s
(9) §2(6) — D9(Ej=

if the eigenvalues of interest are either the smallest or the largest, we can

consider (a) and (9) as limiting cases of Macon). In [11,13],g1(e) is used

for r=s=o which means the largest eigenvalue. other authors used the smallest

ones. The use of the smallest eigenvalues has the effect that the diagrams show

valleys insteadof peaks for a: 9k. Therefore, some authors [16,9] apply 1/§1(6).

_ 5 _ 2
v.V.V. D = E. v D V. .
rJJJ)9 J=ri||931

ASYMPTOTIC BEHAVIOR

Since the following arguments do not depend on the parameter 6, its nota-

tion is omitted. We now discuss the asymptotic behavior of the diagrams (6) to

(9) if F behaves asymptoticallyas described above. Starting from the asymptotic

complex Wishart distribution, the results of Capon and Goodman [6] can be

applied._?hen we have that classical beamforming a is asymptotically distribu-

ted as (DFD)c/(ZBM)x§BM/c. 0n the same way, one obtains for Capon's method that

_._ _ _ _ _
go = (DF 1D) 1 behaves asymptotically as (DF 1D) 1c/(ZBM)x%(BM/C_N+1),where we

have assumed that F has full rank and BM/c>N—1. Pisarenko [15] gives an argument

that the estimator (7) is asymptotically normally distributed.

In the following we shall describe the behavior of the diagrams g (6) by

means of the properties of the eigenvalues and eigenvectors of §. Theorems 9.4.1

to 9.4.3 in [4] state that under some regulaityconditions and if the eigen-

values of F are distinct, the eigenvalues and corresponding eigenvectors V0,...,

vN_ ,V ,...,VN_1 are asymptotically as Bill—Na and B + 0 independently and normally

distriguted variables with

‘> . '> . z
(10) Ave vj = uj, Varvj = ujc/(BM),

+ . + L ' _ -2 -
Ave Vj ~ U3; Cov(vj,vj) — c/(BM)El*juju1(uj ul) 0101.

The notations Ave etc. mean expected values derived in a term by term manner from

a Taylor expansion, and uo>u >...>pN_1 are the eigenvalues and 00,...,U ' the

corresponding eigenvectors 0% F . We assume that the biases of vj and Vj are small

in comparison to variance terms. As a consequence, the variables IBVjIZ are

asymptotically distributed as a§/2x2(2|5u.]2/o?), i.e. except for scaling non-

central chi-squared with 2 J J -

AngBVjIZ = o§+i3Uj|2, levalz é 02(0§+2IEUj|2),
3 _

c/(BM): )‘2 [ou1|2.a2 — Va‘r’fiv') ( _
j ' j 1*:“j“1 “j “1

Now, it is simple to express the corresponding moments of the diagrams g1 and g2.

For (B), we find 5

(11) szgl a g1+23=ro§,
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where g denotes the best possible diagram which is defined so that in the defi-

nition of at the eigensystem of F is replaced by that of F, for example

5 _ 291 a zj=r|oujl , _

(12) Va? (5 a 22S_ OZIDUJIZ.
1 3—: j _k

We have omitted terms (BM) for k>1. The moments of (8) are

+ a 5 2
(13) Aveq2 — g2+2j=rujaj,

(14) Vazgz a quungUjIHzogw/(sm lDuj|2).

A computation of the moments of g in a similar way does not result in a good»

approximatiOn since we didnot tafie into account the first order errors in Ave uj

and Ave v . Therefore, we note the following expression which can be obtained on

the same any as shown in [15],

us) Ave(§°-q°)2 s c/(amh- (go) ZEg'Loujulmijhml))2/(uj-ul)2EU)IZIDUIIZ.

where h' is the firstderfivative of h which has to be a holomorphic function in the

right half plane and (h(uj)-h(u1))/(uj-u1) is replaced by h'(uj) for uj= ul.

In the last paragraph, we presumed distinct-eigenvalues of F. If some eigen-

values are equal, for example in model (1) the smallest eigenvalues when P = 0

and Fn = nt, the corresponding eigenvectors V of F have not the asymptotic

properties (10). However, in Pisarenko‘s arguments this assumption is not used,

and (15) can be further applied. As indicated in the last chapter, (8) and (9) can

be approximted by h(§°) if for example the smallest eigenvalues are of interest

and h is a suitable holomorphic function. Then, we obtain asymptotic expressions

for the mean sguare errors similar to the right-hand side of (15) except for the

factor h'(g°)' . The problem in this connection is that we have to know which

eigenvalues are equal and then to choose the integers r and s in (8) and (9) ap-

propriatly.When for example in (1) F = O and En s nt, we have to estimate the

rank of F . In [11], a solution for ghis case is given. For testing the equality

of eigenvalues, we refer to the statistical literature e.g. [10],[17]. If u =

...=us and r and s are extremum, the interesting point is the asymptotic behavior

of Z:=rlbv312 = E(£§=rvjvj)0. one can approach this by useof papers [1], [B].

BOUNDS

Since in applications the exact spectral matrix F and its eigensystem are

unknown, the asymptotic expressions (11) to (15) cannot be evaluated. What we can

say in a concrete situation is that g and 52 tend to overestimate g and g2 and

that biases and variances of the 51 are of order (BMrl as 8M4“. We erefore de-

veloped bounds for the deviations

(16> :11 = lei-ail _
from the peak estimate g1 to the best possible diagrans 91 which require less

information about F.

We first investigate d1 =']Ehib] for i = 1,2, where A1 9 -p I
re 25

-s—’ =S_ =s — _
grs—Izjaxvjvj, Pr5 Ej=rUjUj and A2 £j=rtujgjj uijj) are hermitian matrices

Using the vector norm H DH = (ED)r/2, we have for i = 1.2

. ' '2
I

(17) di s h on 61, I. 2 _ 1’2

5i s 539 di(e)/“ De“ 5 (max eigenvalue (A1A1)) = llhiul.
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This bound cannot be improved in general. The matrix norm “A.”1 is unitary—

invariant, i.e. H BAiCII1 = H A1”1 for unitary matrices B and C. Every such matrix

norm “ AI“ with H Aifll 5“ A1” can be used to bound 51, for example the square

norm ii hillSq = (tr-‘(KiAiHl/zs

As shown in [2], bounds for IIA II were found by application of Davis' and

Kahan's results on weak perturbation of hermitian operators [7]:

Assuming 2(s-r+1)§N and the existence of a number A>o so that

- the eigenvalues v 2...évN_1 of F satisfy vs-vs+12A if s<N-1 and

v -v 2A if r>0,o
r-l r

- the eigenvalues noz...2uN_1 of F satisfy us-VSSA/2 and vr-uréA/Z,

— i| n||1 s .A/2, where a = fi—F is Called perturbation,
then we have

as: MAINS IIQrs—Prslls 2 lull/A
and for H “1 the more exact bound

(19) “Al”! s 2‘ 1/2(1-(1—4|| allf/AZH/Zfl/Z.

1/2l

Consequently, if g is a good estimate of F and if_the eigenvalues of interest

are well separated from the other eigenvalues of F by a number A>o which we know,

Ithen d /” DI] 2 is bounded by the right-hand sides of (18) and (19) . In model (1),

the K largest eigenvalues are well separated from the other ones if the weakest

signal has sufficient signal-to-noise ratio, the coherence between the sources

is low and there is only weak coherent noise.

To find bounds for d2, we write
._. . s
A ' = 2 v. ..—P . + v - . P ).ll 2(l ll j=r( 3(ij j3) (jun) jj ll

if the u. are distinct and obtain

n u s
2 . . ..- .. .— . .( onlazn s two)“ Q]: 93311 + IvJ ujl)

Similarly, if ur=...=us,

(21)iIA2H s 2§=rlvjwj |+tvs+|vS-usl) ll cars-PIS“-
If we bound lvj-uleH H“ 1Sllfllland use (18) or (19) we get bounds for IIA2IL

e.g. by (19) and (20)

V s - . -1/2 _ _ 2(22)” A2]|1 s Ej=r(hH(|1+vj2 (1 (1 4HHH1/ Aj) ) ),

where Aj is the distance from vj to the nearest eigenvalue of F. As known, we may

1/2 1/2

assume that with probability one all Aj>0 if (BM)/c>N and zero is not an

eigenvalue of F.

In analogy, we can obtain bounds for

_ _ 2 = N—l _
dh _ page) h(go)l 5 Ho || llnh 11,13.h lli=o(h(vj)ij hulijij I

when in (20) and (21) vj is replaced by h (vj) etc. If h is specified, we find

bounds for ]h(vj)-h(uj)l depending on h, vj and H EH which results in bounds

- » n _ -1 _ —1 , _
for 1) Ah“. Finally, do — In (meow h (h.(g°))| 1.5 treated like |h(vj) muj) II.

As an example, in [3] is noted the corresponding bound for Capon's method.

Space doesn't allow to go into the details. We only remark that the bounds com-

posed in this way are not tight in contast to (18). Possibly, an application of

the approximation method in the proof of Theorem 1 in [15] gives better bounds. ’
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The only unknowns of the bounds (IS), (19) and (22) are the norms of

B = F-F. The behavior of these norms and.possibilities for their estimation are

of interest in applications. First, we apply Theorem 7.7.3 in [4] which‘states

that under some conditions asymptotically forBM¥wand 3+0 the elements f (A) of

§(A) satisfy “3
- - _ -1/2

sup|fnj(k)-Efnj(l)l —_o((sM/1n<1/B)) )

with probability 1. Since we can write

_ -1
suplEfnj(X)—fnj(l)l — o(B)+o((sM) ),

we obtain asymptotically _1/2

H B||1.$ [la Ilsq = 0(3) + ouBH/lnu/sn )

with probability 1 and error terms being uniform in A. In comparison with this

result, we know

E” alll s an an“ s (nllu nil) = 0(3M)+ 0“an

Theesgmation of HE H and especially of NE in applications from data orH
from F is not yet solvedsatisfactory. For Ilélgq - (Zn mlfnm-fnmlz)1/2 there

1/2 ' -
is the crude estimate (c/BM) tr(§)r Here, we have used that E is an estimate

(4) with low bias and covariance (5).

1/2 -1/2)

NUMERXCAL EXPERIMENTg

For evaluating the bounds (19) and (22), numerical experiments were executed

by means of an FPS array processor 120 B. The model (1) was used for a line array

with N=8.12,16 sensors having a mutual distance of a half wavelength. We used two

noise situations a) sensor noise and isotropic ambient noise of the same power,

b) ambieng noise alone and K=1,2 incoherent signal sources with bearings 9 =10

and 9 =40 and powers 900:1 and 911:0.5, respectively. (Our problem was hog to

inves igate the resolution of the methods.) For signal-to-noise ratios (S/N) =

W,6,3,o-3,-6,-iodB, the best possible diagrams 91(3) and g (9) showed the peaks

correctly as decreasing (s/N) up to -6dB. We investigated the behaviors of the

deviations only up:to this value.

Estimates §=(f ) were simulated by use of (4) assuming no bias and a simpli-

fied structure of Eddependent, zero—mean triangular distributed pseudo—random

variables Zrij in a real representation with variances as given by (5). For

scaling parameters a=(6c{(BM»1/2 = .ol,.1;.2,.3,.5,.7,1.o,1.3 and each possible

matrix F theirestimates F were computed, then the diagrams g (6) and gice)

(i=1,2), the numbers 61 and 6 as global deviations and finaily the bounds (19)

and (22). For comparing the different situations, we asked for the factor by

which a bound is greater than the corresponding global deviation. We found that

in comparable situations in the mean the bound (19) is 2 to 3 times greater than

the global deviation 61 and (22) about 1.5 KH-times greater-than 62.

Concluding, if there is a good estimate of Hall = iIE—Flland if the eigen-
values of interest are well separated from the other eigenvalues of §, then the

bounds'(18) and (19) give good tools to predict the behavior of 0wsley's pro-

jection estimate g1. The bound (22) seems to be crude and should beimproved.
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