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Abstract
In this paper, we shall look into the problem of detecting a signal belonging to a

family of signals {Sj}. This family is defined by its statistical properties. The caracteristics of
the interfering noise are also known. We assamc that each signal Sj is defined on a close
interval (0.T-). Outside this interval, Sj is 0.

l- Chose of an optimisation criteria

1-1 We shall show that in order to use all the information that is available a priori, it is
necessary to construct a serie of filters whose properties are comparable to those of a matched
filter. We shall present a practical method of calculating the filters, and show that there exists a
basis in which both noise and signal components are uncorrelated random variables.

1-2 Definition, notations and link with matched filtering.

S](t). a deterministic signal, is 0 ouside (QT). '

X(t) is the noise, whose autocorrelation function is Rn(t). In the case of matched filtering, we
assume the signal of interest is either absent, or equal to 81(t). and this in presence of noise.

Consequently if the signal is present, the delay 1: is necessarily 0. We define on (0,1‘) 3 function
A(t) such that the ratio K is maximized:

“summer
K _

— ;A(t)X(t)dt]2} (I)

The optimal function A(t) is the response of the matched filter.

1.3 Case of an unknow delay 1:.

When the delay '1: is not zero, it is necessary to replace 51(t) by the random function

{510-1)}, where 1: is a random variable that we may assure. in absence of additional

information, to be uniformaly distributed on a physically acceptable interval.

11 is logical to redefine the ratio K as

sin — om) air}

It A(t)Ru(t , m)A‘(m) (it dm
T'T

(2)

The numerator of this fraction can be written

T{1340134310 '— 1:) 31011 — o} A'(m)dt dm
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or equivalently

TJJTAGH‘S (t — m)A‘(m)dtdm (3)

1-4 Case of Dopplerised signal.

 

Instead of considering the random function { Sl(t-T)]. where ‘I: is uniformer distributed

random variable, it is preferable to consider {Sl(k(t-‘t))} where k is a Doppler coefficient. k is

also a random variable independant 1:. uniformer distributed in the interval (klkZ).

The corresponding autocorrelation function to this new problem will be:

m - m) = Ek{E1{ sla‘c (t — 1)) s‘,(1‘c(m - r))}}

In an even more general approach, if the random function is of the form Sid, t - 1:) the

corresponding autocorrelation function will be:

I pub E,{Sl(lt°,t — 1)s‘1(E,m — 1)} are
Dd)

where DdE) c RN andpm is the probability density on},

2 Optimisation of the signal to noise ratio

2-1 We must find the function A(t) such the quantity

TJJTAO) rs (t — m) A‘(m) dt dm
— ——-—-————-—.— 4

H A(t)Ru(t,m)A(m)dtdm ( )
1" 'r

is maximum.

In order to optimize K according to equation (4), we shall discretize the problem.
a} t1.t2,....tN instants distributed along (0:1').

a l X(t l)

> a X(t

A= , X= : 2) . A‘=[a:a; an]
a X(t N)

In the discret case, the equivalent of the signal to noise ratio is:
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akl‘slaL — tun;
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2

K: ,1
f at Ru(t k — t1”;

Let 1". the symetrical matrix of elements:

I‘sla2L - t“)

and R the noise covariance matrix, then K can be rewritten as

A‘rA
K: I

ARA

 

(”

2-2 Solutions and interpretations.

a) We see that K is a generalised Rayleigh quotient It follows that K will be the largest possible

if A is the eigenvector associated to the largest value of the matrix C = R4. 1‘

The square matrix C is assumed to have N distinct eigenvalues and N eigenvectors.
C, the product of two symetric square matrices. is not itself symetric.
ac matrices C‘ and C have the same eigen values.

CXi=7viXi,
CWFMYJ'

We know that

Y‘in=0 if i¢j (6)

The relation (6) expresses the fact that the left and right eigenmodes are orthogonal.

b) Let Yj= R Xj (7)

Whe shaw that Yj is a left eigenmode of C.
By definition R'1 l" Xj = 3.,- Xj_

Since 1' and R are symetrlcal, by transposition we have

Xi‘r = Xj X] R ,

or, with (7)

Yj‘ R'1 1‘ = MY}-

Yj'C=lej‘-

OYJBXJYJ'.

WeshallhaveX'iRXj=0 if iatj (8)

Proe.l.O.A. Vol 13 Part 9 (1991) 196  



 

4

Wechosethexisuch that x'i in =1 . (9)

c) Physical interpretation .

Let us suppose that in the expression

t 
K: A'I‘A’

A RA

wesetA=Xo;

Weobtain

x‘orx0 ,
K=—‘——=X°7.0RX0=2.0-

XORXO

The highest eigenvalue represents the optimal signal to noise ratio.

3 Decomposition of the noise and signal along the basis vectors Yi.

3-1 Decomposition of the noise.

Let B = XbiYi

Evaluatingbi and its variance:

X'iB = x‘izijj= EbJX'iY’. = bix‘ivi = bix‘ini = hi.

2 t t t t tE{|bi| }= E{XiBB xi} = XiE{BB }xi = xinxi

E{bib}} = E{ X'iBB'Xj} = x‘inj = o.

conclusion]: if we decompose the noise along the basis vectors Yi = RXi, the coefficients

of the decomposition are bi uncomlated variables of power equal to].

§-2 Decomposition of a centered signal along the basis Yi .

Let S=2siYi. .

We shall successively have
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I t I i

XiS = Xi Zsij= Es’Xin = siXiRXi,

si = X28.

The power is given by

E{X:SS‘Xi} = x'irxi = xi.

Also

E{x§ss‘x’.} = x'rx j = x‘iathxj = o.

ConclusionZ: The decomposition of the signal along the basis functions Yi are si uncorrelated

variables of power equal to Ki .

4 Tentative regrouping of the information output by the different filters.

The optimisation of the signal to noise ratio K. has led us to calculate the optimal filter X0,
and also others filters X1,X2I......XN.1.
It is tempting to regroup the all the information from these different filters to obtain a more
synthetic information.

Let us assume the signal to be stationary centered gaussian noise of covariance malrice l", and
the interfering noise to also be gaussian of covariance matrix R. -

Using the basis vectors Yi, the covariance matrix of the noise is R = INKN

Assuming the noise to be independant of the signal, the covariance matrix of the signal added to
notse IS

1+7Lo 0

D=OI+Al 0

00 1+1N_

An hypothesis test leads us to compale the following two laws:

exp( — %Z'D'IZ) 1 ! ,exp( — gz‘Z)
(21:) ’x/B (21c) ’

 

I
I
I
—
9

In other words. we use the quantity T which is the logarithm of the likelyhood ratio.
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This is written T = )3 z? 1 + a” where 2: corresponds to the filtering of corrupted signal
i .

by the different Xi filters.
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