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1. INTRODUCTION

One of the significant effects of finite—amplitude sound
propagation is that of saturation. At low intensity the received
signal, at any point in the field, varies in proportion to the
source amplitude. However, at higher intensity the amplitude at
the receiver is reduced by nonlinear effects and, as the source
strength is increased, eventually tends to a limiting value,
known as‘the saturation amplitude.

Shooter, Muir &Blackstock (l97h) conducted a theoretical and
experimental study of the important case of saturation of
spherically symmetric sound waves. Based on a heuristic argument,
these authors give a theoretical expression for the saturation
amplitude which agrees well with the experimental results. We
refer the reader to this source for a discussion of the history
of the problem. '

The starting point for our discussion will be the spherical
Burgers' equation

1!!— + -fi ZU- .M- 2. u§%*¥‘“z 31," (11)where u is the particle velocity, 4. the sound speed, A the
diffusivity of sound and '5: ‘t-QJV.)/a,. is a retarded time,
based on the source radius fl; . The boundary condition on the
source is that

Hello Sim (At I (1.2)
forming a well posed problem for the equation (1.1).

In a recent aper (Crighton and Scott (1979)) the problem
-(l.l) with (1.2? was investigated from the point of view of
singular perturbation theory in the limit of amplitude saturation.
The basic assumptions needed to derive equation (1.1) were
discussed there. They are that : the source Mach number be small,
that the source radius be large compared to the wavelength and
that the quantity be small. The latter assumption says that
diffusive effects a e slow on the scale of one period.

2. -FORMULATION OF THE REDUCED PROBLEM

We change variables to

R=£o£v¢(¥.), V: N 9=wt ‘2'”To u.’
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and define the two free parameters

R0: +\ cor. I 8: 004 (2.2)
CT-H‘uoa-oEquation 1.1) becomes

g‘é_v%= 86"“).‘1 (2.3)
b 9"

while (1.2) reads

vco.e)= we: ' (2-10
Symmetry considerations show that the solution is periodic in E?
and t at > -

v 2,—9>=-\r(n,9) (2-5)
Increa51ng the source amplitude L1. corresponds to decreasing E
and increasing 2, , while maintaining the product 8K9 fixed. We
therefore examine (2.3) with (2.14) in the limit 8+0 and afl,=a. ,
which should correspond to saturation. Note the identity AE‘LQ ,
where u is the usual small signal attenuation coefficient

._ Au?- -
°‘~ 7:5 1 v (2.6)
This singular perturbation problem was d“scussed by Crighton

and Scott (1979) and it is a consequence of their analysis that
the saturated waveform is given by

V: e Page) (2.7)
where the function F S, satisfied the reduced equation

3F- / 7'.5. F c es‘g . (2.8)
and t e con ition

§F~ flmk{—§%} — 9 v (2.9)
as 90 y uniformly in -1\'SG‘S"K . This problem depends only
on t e parameter mgdf. . Equation (2.7) can be rewritten in
terms of physical variables as

u: fife-fl— F(aln(-$;), wt) ' . (2.10)
an exact expression for the saturated waveform within the limits
of validity of (1L1) with (1.2). Of course, the question remains -
how do we solve (2.8) with (2.9) ? In general this must be done
numerically. '

 

3. DISCUSSION OF THE REDUCED PROBLEM

The right—hand side of (2.9) represents the well know sawtooth
profile of nonlinear acoustics. This evolves under the equation
(2.8) and eventually goes into old—age, where the sound
propagation is dominated by linear decay. The form of the old—age
solution must be given by

Fm C(cq ufl—aeg/q) sa& ‘3'”
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for §>>L Which, in terms of physical variables, reads
‘ —dr~ .

Um) DCdTo)_fiqr—w' e, '5me (3.2)
The old—age saturation amplitude is thus determined apart from theone unknown function (F. ZQCLQ)) , whose evaluationrepresents the main goal of this study. In § 14 we will describe
the numerical evaluation of MA) , but for the moment we
investigate the limits of small and large 0‘“;

If we assume that a“; is large, then equation (2.8) becomes theBurgers' equation and we have the Fay solution

-'—- 2 e > mwhich was shom'i to sanisfy the condition (2.9) by Blackstock (19614)It then follows that

Dom: some“. (3.1»)Not surprisingly, these results correspond to those for the
saturation of plane waves ~ the curvature of the source is
unimportant when an“. is large.

The situation is more complicated for JP, small. We wish tosolve the problem (2.8) with'(2.9) in the limit q-go . Initiallywe adopt the scaling

audit: 3/“ - (3.5)
e caspansion

aF: F + o 1 (3-5)to find thggf’s‘) '
i; = " (3.7)

for 0< 9- 211' . That is, the main part of the wave remainsa sawtooth in this region. The shock at 9:0 is described by
the scaling

5‘: 9/1
(3.8)and the expansion

aF= zmhf-EJ} + '03 “43.9)
The exp sion in he shock is the first to break down. Itih'doesso because the next termin the expansion (3.9) becomes comparablewith the girst one when

'ai‘eY-e OCI) - (3.10) 'and so we define §.(Q)by the relation
a re" :1 (3.11)and a oat the co rdinates .

. E’ 1"}? » . = 9E (3.12)with the exp 510R

03$: E13, )5. 9(1) (3.13)to obtain the equationA

at " " 3‘ at?C -_ F; = e o (3.14)3f- ; '55" '

3.2

 



 

Proceedings of The Institute of Acoustics

AMPLITUDE SATURATION OF SPHERICAL NONLINEAR VAVES

and the matching cond’tion

foth . (3-15)
as g—‘D-ao .

This region is very similar to one which'occured in the study
of spherical N—waves by Crighton and Scott (1979) and we refer the
reader to this source for further discussion of the analogues of
the above scalings and expansions. It was shown by the above
aut are that A *

.N Tferfi— O’e‘E/z) (3.16)
as 9+” , where tr} denotes the error function. The '
"shoc " is now governed by li ar diffusion and so even though we
cannot solve the problem for we are able to continue the
solution for larger E .

The next breakdown o curs because the shock width becomes of
order unity when and so we define

§=lh\a (3.17)
and the}; write > »

g=§_1§t .. . (3.18)
with the exggnsion

am: up» can (3-19)This results. 1‘ e equation I

gin e? 5 . (3.20)
‘ .

he matching co itionwit _

tuwfittee’ ")-—9 (3'21)as 3.3 _... , unifome in —1T$ , This is the region
where the main wave expansion (3.6) breaks down and the shock and
main wave merge together.

The solution to this probleg‘n is i
I — ‘

Fa: aging‘nfie” (3.22)
so that the old-age solution is

2. 4165/“ . i .F Nm 9.,“ Ga (3 23)
and hence .

DCclro‘):—fl'—d'-fl . (3.21:)
The saturated waveform for small if. is therefore as follows.

It consists of a sa tooth containing shocks until we enter the
region defined by and it then decays under linear effects. It
will be noted that this is very similar to the situation envisaged
by Shooter, et a1. (19 14) to obtain their theoretical model. In
the region defined by and 5' the shocks are qu si steady, this
is not the case in the region defined by and 5

We have thus obtained the complete saturated waveform in the
liAmiés «(To small and large, apart from the shock breakdown region
(f, i when df. is small. In particular we have the limiting
forms of Dflura .
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4. GENERAL “1;: NUMERICAL SOLUTION

As mentioned before, Shooter, et al. (1979) gave a theory of
saturation of spherical waves. Their results for the old-age
saturation amplitude is of the form (3.2) provided that

We) = +PCuro) en“) (m)
where the function I" is defined by

PC”) =i , i (4.2)
This equation for Dfii§)agrees with the true result (3.24) in the
limit 'of small if. , but for large air. their result becomes

.DCur.) = 4.2 at. 3"“ (ll-3)which differs from the true result (3.“) by the factor chz .
Indeed this discrepancy was pointed out by Shooter, et a1.
themselves.

A numerical integration of equation (2.8) with the condition
(2.9) was undertaken by the present author to try and clarify this
issue. The extremely singular nature of the initial conditions
(2.9) presented stability problems, but, after some judicious
transformations of the coordinates, it became possible to
integrate the equation using a three—level, implicit, finite-
difference scheme. The function bod“) calculated in this way,
is plotted in the diagram, along with the result of using
equation (#.l).

A modified form of the heuristic formula (4.1) with (h.2)
improves the agreement with the true form of Dfidq). We modify thedefinition of PC!) as follows

(PM- (1— u—L—ah) 24—0“;) =| (M)
which leads to agreement with the true result in the two limits of
0“} small and large. The result of this modification is

plotted in the diagram and it will be seen that there is now good
agreement with the true form over the entire range of values of
0“} .

5. CONCLUSION

We have considered the equation for the saturated waveform which
was previously derived‘using matched asymptotic expansion
techniques. It has proved possible to solve it analytically in
two limits, namely small and large at“ . In the small I“; case,
the asymptotic structure supports the conjecture of Muir (1971)
that the sawtooth region can be effectively matched into the
old—age region. For intermediate values of dfio , the old—age
saturation amplitude has been obtained by numerical integration of
the equation and a modified form of the heuristic equation of
Shooter, et a1. (1974) leads to improved agreement with the
numerical results.
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The function Mum), occuring in the old—age saturation

waveform (3.2)
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