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ABSTRACT

A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic

nonlinearity parameters. It is shown that the magnitudes of the nonlinearity parameters

strongly depend on the crystalline structure of the solid and that the dependence for many

Structures is dominated by the ionic core-core repulsive exchange interactions of neighbouring

’atoms. Measurements of the nonlinearity parameters are used to calculate the Bom-Maycr

"hardness" parameters for several crystals of cubic symmetry. The measurements are in good

agreement with values of the parameters determined from other methods. The Rom—Mayer

parameters together with sound velocity measurements are then used to calculate the elastic

constants of orders two through five for the crystals It is found that the magnitude of the

elastic constants of each order is approximately a factor of ten larger than the magnintde of the

previous order and is opposite in sign.

INTRODUCTION

The acoustic nonlinearity parameters are found to play an increasingly prominent role in

describing the tltermoelastic properties of crystalline solids since they directly quantify the

anharrnonic character of the lattice modes. The parameters appear. for example. in the

thermodynamic state functions}, in equations describing the thermal expansivin of solidsz.

and in expressions for the temperature dependence of elastic moduli3. They appear as scaling

parameters in the equations for the acoustic radiation stress" and radiation-induced static

strains”. They are also found to be strongly correlated with Brinell hardness numbers for

metallic alloys”.

We define the acoustic nonlinearity parameters from their appearance in the elastic wave

equations. For a lossless solid of arbitrary crystalline symmetry the nonlinear equations of

motion in Lag-angian coordinates are" (Einstein summation convention)

 

32w au aluk
Pa E'- = [Cum 4- (lemltsik + Cunt 5m + Cjtau5im + Cijklmn)—aa:] Bap” (1)

where ui are Cartesian components of the wave displacement vector (particle displacement). ai

are Lagrangian coordinates. pg the unperturbed mass density. t is time. and 85] are Kronecker

deltas. The Brugger elastic constants C(fl);jumnu of order n are defined from the internal

energyperunittnassUas '0

 

Cooiyllmnm = p (2)
(Mimakjgnmnuu)n=0

where nij are the Lagrangian strains.
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We assume that an initially sinusoidal wave of amplitude A, unit polarization w. and angular

frequency to is launched from a planar surface such that the boundary condition

u; = Awi cos a)! . kjaj = kl =0 (3)

is satisfied. In E1413) k is the propagation vector and l is the propagation distance from the

planar surface. The self-resonant solution to Eq.(l) subject to the boundary condition.

Eq.(3). is 9

ui =§pk2A21wi + Awi cos (on - kjaj) - é-Bszzlwi cos (2m: - 2km) + (4)

where the acoustic nonlinearity parameter I) is defined by

(5)

 

The static term on the right-hand side of .(4) was not originally included in the solution of
ref. 9. The relevance of the static term its relationship to the acousric radiation stress is
discussed in ref. 6. We see from Eq.(4) that the nonlineanty parameters prominently appear

in both the static and harmonic generatim terms. The B parameters can be determined directly

from absolute amplitude measurements of the acoustic wavet‘orm5t5-ll or calculated from
Eq.(5) with knowledge of the second and Mutter elastic constants obtained from other

measurement techniques”.

. CRYSTALLINE STRUCTURE DEPENDENCE OF NONLINEARITY PARAMETERS

Experimental elastic data on 29 crystals of cubic symmetry were obtained from the literature.
The nonlinearity parameters along the pure mode propagation directions [100]. [110]. and

[111] were eithercalcularedfrom Eq.(5)orrecordedfmmdirect flmeasurements. The results

for NaCl-structured crystals are given in Table l for wave propagation along the [100]
direction. We see that the values of the nonlinearity parameters are bound between MD and
15.4. a variation of approximately 10 percent. The values of the elastic consmnts for these
crystals. however. vary by several hundred percent. Similar results are found for crystals of
other structures and are summarized in Table ll (again for wave propagation along [1(1)]). We
list in the table the sn-uct-ure of the cubic crystal, the type of atomic bonding. the range of

values ofB for all crystals having a given structure. and the average of the [5's in that range.
We see that the acoustic nonlinearity parametaa are strongly ordaed according to the type of

crystalline strucrure. 'nte range of values of B for a given struenrre is distinct; overlap of
ranges occur only slightly ft! fee and fluorite structures.
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Table 1. Longitudinal mode acoustic nonlinearin parameters B along [100] for NaCl-

structured crystals.
__________———-—————

flflifl: RbBr LiBr RbI NaCl KCl LiF MgO RbCl NaF

Mg: Ionic Ionic Ionic Ionic Ionic Ionic Ionic Ionic Ionic

M1901: 15.4 15.2 15.0 14.6 14.4 14.2 14.1 14.0 14.0

____—__—___—-————-———

Table 11 Comparison of Structure. Bonding. and Acoustic Nonlinearin Parameters Along

[100] Direction of Cubic Crystals. - ‘

_—___________———-—————-——

Smut: Sandi“ flav Bennett}

Ionic 14.6 14.0-15.4

BCC Mannie 8.2 7.4 - 8.8

FCC (inst gas) Van dchaals 6.4 5.8 - 7.0

FCC Metallic 5.6 ' 4.0 - 7.0

Fluorite Ionic 3.8 3.4 - 4.6

Zincblende Covalent 2.2 1.8 - 3.0

The influence of the type of atomic bonding may be inferred from a comparison of fec-

structure crystals. The B's for the fcc metallic-bonded crystals and the fcc Van der Waals-

bonded crystals are approximately equal even though the difference in strength of these bonds

is very large. We thus infer that the influence of the bonding on the value of the nonlinearity

parameter ts small compared to that of the crystalline structure.

THEORETICAL MODEL

The experimentally determined structure dependence of the nonlinearity parameters suggests

that the geometry of the local atomic arrangement and perhaps shape. but not su-ength. of the

interaltmlic potential are dominant factors in determining the magnimde of B. This suggests in

turn a model based in first-order approximation on a short-range. two-body. central-force

potential. We follow an approach originally suggested by Wigner and Seitz13 and used

extensively by other researchersJHG We consider only the static lattice contributions to the
internal energy and write the potential energy density of the static lattice as

poU = 1%,; 2w) » (5)
where Mr) is the energy perion as a function ofion pair separation r. the sum is over

ion pairs. and V0 is the atomic volume.
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The relationship between the Lagrangian strains and the ion pair separation isl7

1'2 - l’oz- = 2 Zfiififilij (7)

where re is the initial (undeformed) two-particle separation distance. r is the final (deformed)

two-particle separation distance, and fit is the difl'erence in Cartesian coordinates of the two

particles in the initial state. From 511.0) we obtain

 

a l d._=.._ __.,.D_ (a)
amj gig] , gig]

From Eqs.(2). (6). and (8) we get. for nearest neighbour interactions only. that

damn..." = ,6; m sarcoma...) [ mm] mo (9)

From Eq.(9) we may write

Cm“ = 1‘17; 2 art [13% (m .= .0 (10a)

COM] = {vs 251‘ [03¢ (1’)] taro (10b)

where we have used Voigt contraction of the indioes (subscripts) for the elastic constants.

For acoustic waves propagating along the [100] direction in cubic crystals we find from
Eqs.(5) and (10) that the nonlinearity parameters are given by

215 (0345(0):= _ 3 +_____9. 11
B I mrwrnml ( )

The crystalline structure dependence of i! enters through 51 and the summation.

We now introduce as the central force potential the Born-Mayer potential written in the form

suggested by Hiki and Granatols '
w) = A e-ero - 1) (12)

where ro represents the equilibrium separation of nearest neighbour atoms and B is the

"hardness" parameter. This potential provides an excellent representation of the quantum

mechanical exchange inta-action between closed-shell ionic cones of neighbouring atoms.

From Eqs.(ll)-(12) and knowledge of the atomic arrangement we obtain the relationship

between the Born-Mayer hardness parameter B and the acoustic nonlinearity parameta’s along

the [100] direction for cubic crystals (i.e. cubic Bravais lattice) having three different
structures (i.e. bases). Summing over nearest neighbours only. we find for face-centered
cubic (fcc) crystals

B(fcc) = he +235) + [(3 + 2W + «3 + 2W2) - (13)

«a Proo.l.O.A. Vol 11 Part 5 (1989)   
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for body-centered cubic (bee) and cesium uhlonde tCsCl; structured crystals

'B(bcc.CsCl) = {ms + 23) + [(6 + W + 4(6 + swim} <14)
and for NaCl-smrctured crystals

8(NaCl)=1li-lfl+[l32+4fllml . <15)

COMPARISON OF BORN-MAYER PARAMETERS

From Eqs.(!3)-(15) and experimental values of the nonlinearity parameters we may calculate

the Bom-Mayer B eters. Table III shows a comparison between the Rom-Mayer

parameters so calculated and literature value of 3 obtained from other methods (e.g. neutron

scattering). We see that agreement between the present and Other determinations for fee and

CsCl-strucmred crystals is very good and indicates that the short range Born-Mayer potential

makes the dominant contribution to the nonlinearity parameters of the solids. For NaCl-

structured crystals. however. the values of B determined from 1) measurements is

approximately 50 percent than the literature values. The reason for this discrepancy is

that these solids have a relatively strong spatial rate of change of electrostatic potential which

makes a contribution to B comparable to that of the Bovaayer term in Eq.(l l). The

dominating spatial rate of change of the Born-Mayer potential for fee and CsCl-structured

crystals. however. becomes even more dominating as the order of the spatial derivative

increases. This suggests according to Eq.(9) that use of the Born-Mayer potential to calculate

the elastic constants becomes more accurate for these structures as the order of the elastic

constants so calculated increases.

Table [IL Comparison of Present Calculation of the Dom-Mayer Parameter B with other

 

Com 5mm Manuals) 1mm
0. the 13.2 13.0a
Ag foe 11.7 12.8-13.36
Au fcc 15.9 14.4c

B-brass CsCl 28.3 293‘1

NaCl NaCl 15.5 9.8e
Rbl NaCl 15.9 12.4e
Kel NaCl 15.3 - 10.1e

___________._—_—
21 Gibson. AN. Golad. M. Milgram. and 6H. Vinegard. Phys. Rev. 120, 1229

)
b E. Mann and A. Seeger. J. Phys. Chem Solids 12, 314 (1960)

9 MW. Thompson. AERE Harwell, Report No. ARE-K4694. 1964

d G. Gilat and Cr. Bolling, Phys. Rev. 138, A1053 (1965)

9 P.B. Ghate. Phys. Rev. 139. A1666 (1965)
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HIGH-ORDER ELASTIC CONSTANTS

Values of the second and third-order elastic constants are frequently reported in the literature.
Fourth-order elastic constants have been reported only rarely while values of- the fifth and
high-order constants have not been reported at all: The results presented above suggest that
we may calculate the elastic constants of any order n from values obtained for the previous
order (n-l) according to the expression

-C(n)!-mmn = Z(§i§j§k§l§m§n---)[P“¢(r)lm (16)
"' ijumn. 2(§i§j§k§l§m§nn-)lD“'l¢(f)lram

For simplicity we shall restrict the calculation here to elastic constants of the type C001 in
Voigt notation. We shall also restrict the calculation to fcc crysmla and again assume central- '
force Born-Mayer potentials. We obtain from Eqs.(12) and (16) for orders up to five the

recurrencerelations

d3) _ 32 + 33 + 3
32511111 ' “Tm?

d‘)i111 ='_ B3 + 632 +153 +15 (17)
6331” 2(311- 33 + 3)

CG) _ 34 +1033 + 4532 +105]; + 105

Winn ' ' 2(3 + 68 +15]; +15)

The Born-Mayer B parameters are again obtained from Eq.(13) together with measurements of

the acoustic nonlinearity parameters B. It is clear from Eqs.(17) that all higher-order elastic

constants under consideration may be calculated from knowledge of B and measurements of

Ca)“: pv where p is the mass density of the crystal and v is the sound velocity along the
[100) direction. Since the Dom-Mayer parameters are positive we see immediately from
Eq5.(17) that the sigr of the elastic constant of a given order is opposite to that of the previous
order.

RESULTS AND CONCLUSIONS

Table IV shows the results of the calculations for several fee crystals. We see that in general
the magnitude of the elastic constants of each order is approximately a factor of ten larger than
the magnitude of the previous order and is opposite in sign. The value of the fourth-order
elastic constant calculated here for Cu is in complete agreement with the results of Garber and
Granatols who calculated the constant from a theory based on the measured temperature
dependence of the second-order elastic constants. Such agreement is surprising considering
the crudeness of the a proaimations made in both theoretical approaches. The present
calculations of the fourth-order constants of Ag and Au differ from the Gamer-Graham results
by approximately 30 percent, but again this is reasonable agreement. Fourth-order constants
for Al have not been previously reported in the literature nor have values of the fifth~order
elastic constants for any material. They are reported here for the tint time. Although
derivation of the complete set of independent fifth-mid constants for crystals of n-iclinic and
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the most symmetric cubic classes is to be published elsewhere. tlte results reported here for

G5)“ 111 is representative of the relative magninrdes and signs of these constants compared to

that of the previous orders

Table IV. Values of elastic constants of orders two through five obtained from present

work (in units of 10‘2 dynelcmz).

 

4

CINE! C81 C1111 C111)“

Cu 1.66 -12.7 104 -913

Ag 1.22 -8.43 63.1 -511

All 1.93 -17.3 165 4680

A1 1.07 40.8 114 -1280

 

Finally. knowledge of the elastic constants is important in understanding the therrnoelastic

‘es of materials and in comparing anharmonic lattice theories with experiment. The

fourth and fifth-order constants in particular are found to make a considerable contribution to

the stress-temperattue dependence of the sound velocity‘9 and calculations of these elastic

constants are necessary to compare theory and experiment. The work here shows that

reasonable estimates of the values of the higher-order elastic constants can be obtained from a

relatively simple theory based on central-force potentials together with measurements of the

acoustic velocity and nonlinearin paramters.
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INTRODUCTION

Scanning Electron Acoustic Microscopy (SEAM) is a very useful tool for assessing near

subsurface structure of materials. If the focussed electron beam in a scanning electron

microscope is chop at frequency f in the [05 to 106 Hz range the periodic heating near the
irradiated region 0 the specimen generates an acoustic wave at the same frequency. The

acoustic waves yield a scanned image signal via a transducer attached to the specimen and

lock-in amplifer system Near surface and subsurface contrast with resolution in the range

0.2].tm to mom is produced by local variations in the thermal and elastic properties of the

material as well as in electron stopping power and specimen surface topography.

The SEAM technique has two important advantages. First, it is easy to use and does not

require extensive specimen preparation. More importantly, the technique provides subsurface
information and delineates other specimen features not visible with images typically formed

from the secondary electron signal. SEAM analysis covering various aspects of materials and

device engineering 0) has become somewhat commonplace since its introduction by Brandis

and Rosencwaiga) and by Cargill (3). But the interpretation of the image can be
cornplicated(‘5) and is in some situations still not completely understood. The purpose of this
paper is to help clarify certain contrast mechanisms in SEAM by focusing on the relationship

between the output signal of the receiving piezoelectric transducer (PZT) and the thermoelasn'c

properties of the sample. Our approach is to solve the thermal conduction equations for the

sample andm to obtain a two-dimensional temperature distribution which is then used to

solve the Navier-Stokes equation for the acoustic strain in the sample. Using the piezoelectric

equations we obtain the theoretical expression of the output signal from the PZT.

TEMPERATURE DISTRIBUTION
Sample PIT

We consider the sample-FLT syst Region 0 l 2 3
as shown in Fig. l. The lateral
dimensions of the sample and PZT P0 = love
are considered to be infinite. We =
assume that the electron beam is
square-wave modulated at angular o 11 114.12

frequency to and the thermal power
density H(r.z,t) of the heat source
generated by the electron beam is

y M me f 2 Fig. l Sample-PZT System

Proc.l.O.A. Vol 11 Part 5(19a9) 45.3 



 

Proceedlngs of the Institute of Acoustlcs

PIEZOELECTRIC DETECTION OF SIGNALS

H(r.z,t) = (2T1Pofil1t2a2) exp (in): 4311—101 — 2r23'2) ( l)

where n is the fraction of the primary electron beam power Po convened to heat power and B is the
electronic attenuation coefficient. The primary beam power P0 = lava where lo is the beam current
and V0 is the accelerating voltage Band 20 are dependent on V0 and the propem'es of the sample.
The thermal conduction equations in the sample (Region 1) and the PZT (Region 2) are

V213 — (1/a1)(3Tt/3l) ='(—1/m Hm.» (Region 1) (23)
WTz — (1/a2)(3T2/3t) = 0 . (Region 2) (2b)

where uj is the thermal diffusivity and j = 1.2 represents the sample (1) or transducer (2). The
thermal diffusivity and conductivity are related by the expression 0.]- : Kj/ijj where pj is the mass
density and C] is the specific heat of the material.

The boundary conditions are assumed to be

“1030.032 = 0 . T1 (£11.!) = T2 (Eh-l ) (3a)
“$10.11,th = K23T2(r.|1.I)/az . 3T2(I'Ji+lz.t)faz = 0 (3b)

We first write '1'] and T2 in terms of Hankel transforms and obtain the general solution of Eq(2) as

mm = (em/2) It nae-Budd + Ameviz + B(5)¢°lz] roam 5d5 (4)
0 ,

T2(r.z,t) = (em/2) I [ C(5)e'°2(l-11) + D(5)e°2(l-'I) 1 10(51‘) M5 (5)
0

where

M8) = (nefizomflnwi-IXd-n - (b1+1)(d+)21 - e‘Wl'RQKanXd‘h - (bi-n>(d+)2l)1‘(6)/I-I<5)

3(5)= -(nu-Mam«bland-hmAxum] +e'“‘1"<!)l(bi+r1)(d‘)2-(bi-n)(d*)2llI'(8)/H(5) '

C(S) =- (d+)2(e-BO1-'o)[(n-1xd-)i +(r1+1)(d*)1] + kigimtrtsymm

0(5) = - (d-me-MI-wltn-lttd-n +(n+1)(d+m + 2ne-B'olr(5)/H(8) (a)

H(5) = (d‘)1((b|+l)(d‘)2 "(bl'l)(d+)2] + (d*)1[(bl-l)(d‘)2 - (b1+l)(d”)2]

and where .

NS) = flBPocxp(‘3282/8)/1I2K“012-32). of = 52 + of?

6j'2 =iw/l1j . dj*= eNJ'J' . bl = nap/K161 . r1 = fl/g-l.
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Using the property of Hankel transforms

fads IF(5)J°(5r)rdr = no) (6a)
0

O

the one—dimensional tempemme distributions of the sample and FTP are given by

T1(z.t) = n[1_‘(o)e-fl|1-zo| + A(o)e-U'll + B(o)eo‘lz}eim . (4a)

T2(l.l) = 1![C(0)e""2(l"l) + D(o)e°'2("‘|)lei°°' . (5a)

DISPLACEMENT DISTRIBUTION IN SAMPLE

The dis laeement “(001,311) at a point (m) in an isotropic slab of thickness 11 will satisfy the

Navier- takes equation:

mm +[ 1/(1-2v)]V(Vou(l)) . [2(1+v)p./E]32u(l)/312 = [2(l+v)tx-r/(l-2v)]VT1 (7)

where v is Poisson's ratio. E is Young's modulus, pi is the density of the sample. and k1 is the

- elastic wave prupagntion number ( k12 = tug/(:12 where 012 = E(1—v)lp1(l+v)(l-2v)). Using the

therrncelastic potential function \4I(r.z)eiml and the relationships between \V and u

“r = ant/3r . n; = awlaz (8)

we obtain from Eqs. (7) and (8)

W— [(l +v)/(l—v)]a1T1 +lt12‘I’ =0. ' (9)

_ The general solution of Eq.(9) is given by

Wu) =[a1(1+v)n(l-v)] j [R1(8)e'i"zlz + Si(B)e“‘zlz + (10)
' . O

L(8)e'3'l'16 + M(5)e-¢ll + N(5)e°ll].lo(5r)5d8

where

pus) =r(5)ltfil+kx1-52). M(B)=A(8)/(a12+k11-82)

N(5) =B(8)I(a12+k12-82> . 1:12 =sz+kflz.
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Therefore the twodt'mensional displacement u(‘)z(r.z) and stress amu(r,z) in the z directionaxe

u(1)z(r,2) = [afil+V)/2(1-V)l I (-ik11IR1(5)e‘“‘llz-St(5)e“‘l‘z] - (11)o .

[Br(5)e'fl'“o'/(Bz+kt2-52)l - [<71[1°‘(5)t’r“‘1z - 8(5)e°11]/(612+k12-52)] IJo(5r)5d5 . (D142)

whim) = [El(1+v)] (am/92 + [v/(l-V)](3u:/9r +Ur/‘r + Bur/62) - [(1+v)/(l-ZV)]a-rT1l

= [u-rE/2(l—v)] I [52-k12(1-v)l(l—2v)](R1(8)e'ikzll + snakisz + (12)
0.

[r(s)¢-Bh~zo|/(p2+k12-82)] + [A(8)c“"11 + 3(5)e°|‘]l(012+k12-82)l)Jo(5r)5d5

From Eq. (6:) we get the one-dimensional displacement and mess

“(91(2) = [nu-[(1+V)/(l-V)](-ik1)lR1(0)e'“‘1‘ - 51(0)e‘k1’] - (1 la)

pr(0)e-B'=-zo'/(l32+k12) - cn[A(0)e"lz - B(O)e"l’1/(612+k12)l . (z > u)

0(|)11(l) = [nu-rEk12/(l-2v)l (R1(0)e‘“‘1z + St(O)e“‘lz + (12a)

[r(0)e-Bh-'d/(Bz+k12)l 4» Wow"z + 3(0):“121/(012+k12)]) . (z > 70)

where 111(0) and 51(0) can be determined by boundary conditions.

DISPLACEMENT DISTRIBUTION IN PZT

If the polarization direction of the PZT disc is along the Z axis. the piezoelectric equations are
given by

cu= Sikh-Jan - 4&4sz (13a)

Dz=el<aum+e§TEt+p§ T2 (13b)

where SET is the compliance coefficient. J the piezoelectric constant. AT the thermo-su-ess

constant. EST the dielectric constant. p3 the pyroelecn'ic constant, E; is the component of the
electric field along 2. and D1 is the electric displacement along 2. The temperature T2 in the
921' is given by Eq.(5a).

From Eq(13) we get
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0(2),, = s‘i'aucwau + 131': — 'n'DI (14;

where

s' =s§§+ Rabi/EST] . 1‘: (e§p§/e537) - A; . h' =e§/:5,T .

If there is no space charge within the PZT, as for insulating crystals or ceramics, divD = o and

Bszaz = o. The equation of moti0n is given by

p2(32u(2),/3t2) = 3605,13: = S'(B2u(2),/322) + K'GTq/dz) (15)

The general solution of Eq.(15) is given by

WM!) = R2(0)e‘ik2(z"1) + 52(0)c“‘2(z"1) + (16)

{fowl/51(52): + (k2)2] ) (C(Okdlfl'll) - D(0)e°’2(l‘ll)} .

If the output terminals of the PZT is open. DZ :0. Thus, from Eqs.(14). (16), and (521) we get

0(2),,(2) = -ik2$'[R2(0)e-ik2(1-1l)- 52(o)eik2(z-u)] + (14a)

(1'(ki)71U[(dz)2 + (12):] ) (C(Ok'dza'”) + D(O)E°'2(z"l)) .

Using boundary conditions

c<|)u(o.z) = o . $0,101..) = d2)u(t..i) . u(l)z(ll.t) = umlflm) . 0(2)u(11+lz.t) = o _

we obtain the coefficients

112(0), 52(0) = (-ika12Q1e+ik212 + szyc'cosklil 1 iYklsinklll] v iYleefikmsinklll

: i1Q4efik212cosk, 1,) /2i(Yklsinklllcosk212 - kzyS'cosklllsinkzlz) (17)

when: the up signs are for 112(0) and the down signs for 82(0), and

Q] = ~(r(0)e-fl'oy(52+kiz) + [A(o) + B(0)/(012+k12)) , ‘Y = m-r(I+V)/(1-V)

Q; = [ -i1t1'kflS'(o‘22+k22)][C(0)e'°'2'2 + D(0)e<"2'2] . Y = —1ta-rEJ(l-2v)

Q: = i- 1030’2[C(0) -D(0)1/S'(O‘22+k22) - (17a)

715F(0)e'ml"°’/(Bszlz) - 'YO‘ 1[A(0)¢‘°' 1'1 - 3(0)e°'"l] Md12+k12)]

Q4 = nk‘kzltcm) -D(0)1/(d22+k22) -
Ykmr(0)e-WI-'o)l(fiz+kfi) - [A(0)e*"1‘| + B(o)e°’1l11/(<riz+k.2)) .

Proc.l.O.A. Vol 11 Part 5 (1939) 457  



   

   

  
 

Ftroceedlngs ot the Institute of Aeoustlcs

PIEZOELECTRIC DETECTION OF SIGNALS

OUTPUT SIGNAL 0? PZT

If the output terminals of the P'ZT are open (i.e. D; = o) and the pyrnelectxic effect is ignored, the
PZT output signal can be obtained from Eq.(l3b), (16) and (17):

11+12

(age/55%;) ll (anon/am. K13)1 .
V

(e112 lengAzH Mote-inn - i)+'szto)(;ik212 - 1) +II

[nl‘o‘2/S'tczhk22nt C(0)(e'°'2l2 . 1) - D(0)(eo"2|2 .1) 1

where Ag is the coupling area between the sample and PZl'.

Usually. the sample and PZT in SEAM are considered to be thermally thick (i.e. the linear
dimensions are larger than a thermal wavelength). In this case. the output signal Y can be
approximated as the sum of an acoustical and a Wave signal as

V = V“; + meiml = GO + VW (1820

where

G klsin1(k2l7fl) I (ktcusinklllcoskzlz + kzs'cosklllsinkflz? I

o = ooktt Hui/0'12 Ail/0‘11 43/61)101230+k12104)(1+k121B2)(1-Wc'1) . (lab)

on = gaitmanpa-Bzomfiramu-zv) . Cu = E(l-V)/(I+V)(l-M

vw = nefizfla'znox slim-1o) + zip-Will] lengAzs‘(a'21+k22)(b1+1) (19)

The factor G describes the purely acoustic properties of the sample - PZl' system. The condition

Ptcimnkilt = -P2C2'8flk212

produces system resonance where C] and C1 are the longitudinal wave velocities in the sample and

PZT, respectively. The factor 4) describes the themoelastic properties of the sample. The VW
signal detected by the transducer is thus determined by the sample thermoelasn'e properties but is
modulated by the purely mechanical vibrational response of the sample - PZT system. There are
six limiting cases ot'intetest for this signal as shown in table 1.
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Table 1. Six limiting results for factor 0

 

m I. . . B I . I . . . B l

l Bz>>ld12| >> klz fink; [(1.3

2 Ia‘l2|>>i52 >> lq2 Mllpdfi

3 Bl >> [(12 >>I 012i (Do [61k]

4 k12 » B2>>Io‘12I 00/o‘1kl

5 I o‘le >> k12 >> 32 003 /d|2k1

‘ 6 [(12 >> | 0'12 | >> flz 90B /6'12k1

 

At typical operating frequencies (0.1 - LDW'IZ) the thermal signal is small in comparison'to the

acousn'c signal. Nonetheless Vnmml has two limiting cases worthy of mention for transducers

having a large value of 1; Usually lu'z | >> It; in the frequency range 0.1 - 1 MHz. Then,

whenB>>lcrll, -

VW -_- -ZeIlzXJnPoe‘Blo-dlll[negrAzs'Klfb14-l)dta‘2 . (19a)

The signal is thus proportional to the beam power Po and on". When I! << I 0'1 I ,

vm = altzxgnflpoe-Mi-w/ RS3TA25'K1(b1+1)o’120‘2 I. (1%)

[n this case. the output siyral is proportional to HP.) and arm.

DISCUSSION AND CONCLUSION V

Eq.(18) shows that an AC heat source can generate both thermal and acoustical signals. Although

the wave attenuates very rapidly, information about the thertmelastic properties of the

region is carried by the acoustical wave and received by the PZT. The amplitude and phase of the

PZT output signal depends on the thermaL mechanical and electrical properties of the sample since

Vm - «TE/mum) , vm‘] ~ 0'1/(K10'l + ‘{26.2) -

Ifthere are variations of these parametas in the irradiated region. we will get image contrast.

The relationship between the signal and beam power P., has been experimentally determined“).
When the modulating frequency is in the range 0.1 - lMHz and the thickness 11 of the sample is

aboml-Smmtheaamplemaybeconsideredtobetherrmllythick. WemaycstimateBas

3:1/70 = low/V0143.
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For copper, for example, B: 1.39le‘1 and | 0'1 l = 0.08urn-1 yhen Vo =30kv and f:
235kHz (case 1 of Table 1). both Vacousl and Vumml are proportional to the beam power Po.
These findings are in agreement with the experimental results of reference [5]. ’
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