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ABSTRACT

A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic
nonlinearity parameters. It is shown that the magnitudes of the nonlinearity parameters
strongly depend on the crystalline structure of the solid and that the dependence for many
structures is dominated by the jonic core-core repulsive exchange interactions of neighbouring
“atoms. Measurements of the nonlinearity parameters are used to calculate the Born-Mayer
"hardness" parameters for several crystals of cubic symmetry. The measurements are in good
agreement with values of the parameters determined from other methods. The Born-Mayer
parameters together with sound velocity measurements are then used to calculate the elastic
constants of orders two through five for the crystals. It is found that the magnitude of the
elastic constants of each arder is approximately a factor of ten larger than the magnitude of the

previous order and is opposite in sign.
INTRODUCTION

The acoustic nonlinearity parameters are found to play an increasingly prominent role in
describing the thermoelastic properties of crystalline solids since they directly quantify the
anharmonic character of the lattice modes. The parameters appear, for example, in the
thermodynamic state functions!, in equations describing the thermal expansivity of solids2,
and in expressions for the temperature dependence of elastic moduli3. They appear as scaling
parameters in the equations for the acoustic radiation stress and radiation-induced static
strains56, They are also found to be strongly correlated with Brinell hardness numbers for
metallic alloys’8.

We define the acoustic nonlinearity parameters from their appearance in the elastic wave
equations, For a Jossless solid of arbitrary crystalline symmetry the nonlinear equations of

motion in Lagrangian coordinates are? (Einstein summation convention)

02y [ s e I
Po vl [ank.l + (CjtmnBix + Cijnt Bkm + Citantdim + Cuklmn)aafn 3aa (0

where u; are Cartesian components of the wave displacement vector (particle displacement), a;
are Lagrangian coordinates, pp the unperturbed mass density, t is time, and &ij are Kronecker
deltas. The Brugger elastic constants C{M;jximn,. of order n are defined from the internal
energy per unit mass U as 10

CO%jximn... = pa( Gl ) 2)
_ a"'lija'ﬂklanmn---- n=0
where nj; are the Langrangian strains.
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We assumne that an initially sinusoidal wave of amplitude A, unit polarization w, and angular
frequency @ is launched from a planar surface such that the boundary condition

U= Awjcos et kpj=ki=o0 3

is satisfied. In Eq.(3) k is the propagation vector and ] is the propagation distance from the
planar surface. The self-resonant solution to Eq.(1) subject to the boundary condition,
Eq'(3)| is 9 i )

nj = %Bszzlwi + Aw; cos (ct - kjaj) - %-Bszzlwi cos (20t - 2k;a)) + ... 4)

where the acoustic nonlinearity parameter P is defined by

CiipgBix + Cij CikqiBip + Cijiipg) NiNNqwi k
B ot iipaBix + Cijql Skp +ijkplk 11?-51;‘”;@@) NNqwiwiwp K. (5)

The static term on the right-hand side of Eq.(4} was not originally included in the sclution of
ref. 9. The relevance of the static term its relationship to the acoustic radiation stress is
discussed in ref. 6. We see from Eq.(4) that the nonlinearity parameters prominently appear
in both the static and harmonic generation terms, The B parameters can be determined directly
from absolute amplitude measurements of the acoustic waveform®.6.11 or calculated from
Eq.(5) with knowledge of the second and third-order elastic constants obtained from other
measurement techniques!2,

. CRYSTALLINE STRUCTURE DEPENDENCE OF NONLINEARITY PARAMETERS

Experimental elastic data on 29 crystals of cubic symmetry were obtained from the literature.
The nonlinearity parameters along the pure mode propagation directions [100], {110], and
[111] were either calculated from Eq.(5) or recorded from direct f measurements. The results
for NaCl-structured crystals are given in Table 1 for wave propagation along the [100]
direction. We see that the values of the nonlinearity parameters are bound between 14.0 and
15.4, a variation of approximately 10 percent. The values of the elastic constants for these
crystals, however, vary by several hundred percent. Similar results are found for crystals of
other structures and are summarized in Table I (again for wave propagation along [100]). We
list in the table the structure of the cubic crystal, the type of atomic bonding, the range of

values of P for all crystals having a given structure, and the average of the fi's in that range.
We see that the acoustic nonlinearity parameters are sirongly ordered according to the type of

crystalline structure. The range of values of P for a given structure is distinct; overlap of
ranges occur only slightly for fcc and fluorite structures.
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Table I. Longitudinal mode acoustic nonlinearity parameters B along [100] for NaCl-
structured crystals.

Solid: RbBr LiBr Rbl NaCl KCl LiF MgO RbCl NaF

Bondigg: Ionic Tonic Tonic Ionic Ionic Tonic Tonic Tonic Tonic

Br1oo): 154 15.2 15.0 14.6 14.4 14.2 14.1 14.0 14.0

Table IL. Cornparison of Structure, Bonding, and Acoustic Nonlinearity Parameters Along
[100] Direction of Cubic Crystals. . i

Structure Bonding Bav Range of §
NaCl Ionic 14.6 14.0-15.4
BCC Mellic 82 7.4-88
e e g
Fluorite Ioni¢ 38 14-46
Zincblende Covalent 22 18-3.0

The influence of the type of atomic bonding may be inferred from a comparison of fcc-

structure crystals. The B's for the fcc metallic-bonded crystals and the fcc Van der Waals-
bonded crystals are approximately equal even though the difference in strength of these bonds
is very large. We thus infer that the influence of the bonding on the value of the nonlinearity
parameter is small comapared to that of the crystalline structure.

THEORETICAL MODEL

The experimentally determined structure dependence of the noanlinearity parameters suggests
that the geometry of the local atomic arrangement and perhaps shape, but not strength, of the
interatomic potential are dominant factors in determining the magnitude of B. This suggests in
wum a model based in first-order approximation on a short-range, two-body, central-force
potential. We follow an approach originally suggested by Wigner and Seitz!3 and used
extensively by other researchers.13-16 ‘We consider only the static lattice contributions to the
internal energy and write the potential energy density of the static lattice as

PoU = gy Z4(0) : ©

where ¢(r) is the energy per ion as a function of ion pair separation r, the sum is 1aken over
ion pairs, and V, is the atomic volume.
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The relationship between the Lagrangian strains and the ion pair separation is!”
-l = 2 EEEm;; (D

where 1 is the initial (undeformed) two-particle separation distance, r is the final (deformed)
two-particle separation distance, and £; is the difference in Cartesian coordinates of the two
particles in the inital state. From Eq.(7) we obtain

2o oggld oegp. ®
ij :
From Eqgs.(2), (6). and (8) we get, for nearest neighbour interactions only, that
Cimn.. = 3 E ( EEcdiEnEn-) [ DYO] e ©
From Eq.(9) we may write
CDy; = g T& (D% © =0, (102)
O = gy Z416 (D% @ rero (10b)

where we have used Voigt contraction of the indices (subscripts) for the elastic constants.

For acoustic waves propagating along the [100] direction in cubic crystals we find from
Eqs.(5) and (10) that the nonlinearity parameters are given by

2E16 (D3¢())r<,
=-[3 ...__........_..._9.] an
X,
The crystalline structure dependence of § enters through §; and the summation.

We now introduce as the central force potential the Born-Mayer potential written in the form
suggested by Hiki and Granato13 :

(1) = A e Bltho- 1) (12)
where ro, represents the equilibrium separation of nearest neighbour atoms and B is the

"hardness” parameter. This potential provides an excellent representation of the quantum
mechanical exchange interaction between closed-shell ionic cores of neighbouring atoms.

From Eqs.(11)-(12) and knowledge of the atomic arrangement we obtain the relationship

between the Bom-Mayer hardness parameter B and the acoustic nonlinearity parameters along
the [100] direction for cubic crystals (i.e. cubic Bravais lattice) having three different
structures (i.c. bases). Summing over nearest neighbours only, we find for face-centered
cubic (foc) crystals

Bifec) = 5 (3 +2D) + [(B+ 202 +4G3 + 202} - (13)
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for hody-centered cubic (bee) and cesium chlonde (CsCly structused cystals

B(boe,CsCl = 5 ((6 -+ 2P) + (6 + 3)2 + 4(6 + 3B 12) (14)
and for NaCl-structured crystals
B(NaCl) = 3 { P+ [B2+ 4B 112} . (15)

COMPARISON OF BORN-MAYER PARAMETERS

From Eqs.(13)-(15) and experimental values of the nonlinearity parameters we may calculate
the Born-Mayer B parameters. Table IIT shows a comparison between the Born-Mayer
parameters so calculated and literature value of B obtained from other methods (e.g. neutron
scattering). We see that agreement between the present and other determinations for fcc and
CsCl-structured crystals is very good and indicates that the short range Born-Mayer potential
makes the dominant contribution to the nonlinearity parameters of the solids, For NaCl-
structured crystals, however, the values of B determined from [} measurements is
approximately S0 per cent greater than the literarure values. The reason for this discrepancy is
that these solids have a relatively strong spatial rate of change of electrostatic potential which
makes a contribution w P comparable to that of the Born-Mayer term in Eq.(11). The
dominating spatial rate of change of the Bom-Mayer potential for fcc and CsCl-structured
crystals, however, becomes even more dominating as the order of the spatial derivative
increases. This suggests according to Eq.(9) that use of the Born-Mayer potential to calculate
the elastic constants becomes more accurate for these structures as the order of the elastic
constants so calculated increases.

Table IIL Comparison of Present Calculation of the Born-Mayer Parameter B with other

Crystal  Soucture  Bipresentwork) B (other work)

Cu foo 13.2 13.00
Ag foc 11.7 12.8-13.85
Au fec 15.9 14.4¢
B-brass CsCt 28.3 29.3d
NaCl Na(Cl 15.5 9.8¢
RbI NaQl 15.9 12.4¢
Kcel NaCl 15.3 - 10.1¢

: .9!6% Gibson, A.N. Golad, M. Milgram, and G.H. Vinegard, Phys. Rev. 120, 1229
)
E. Mann and A. Seeger, J. Phys, Chem. Solids 12, 314 (1960)
M.W. Thompson, AERE Harwell, Report No. AERE-R-4694, 1964
G. Gilat and G. Dolling, Phys. Rev. 138, A1053 (1965)
P.

a
(
b
[+
d
¢ P.B. Ghate, Phys. Rev. 139, A1666 (1965)
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HIGH.-ORDER ELASTIC CONSTANTS

Values of the second and third-order elastic constants are frequently reported in the literature.
Fourth-order elastic constants have been reported ‘only rarely while values of the fifth and
‘high-order constants have not been reported at all. The results presented above suggest that
we may calculate the elastic constants of any order n from values obtained for the previous
order (n-1) according to the expression

O - 2B EmEn .. )(DO(Drero 16
"Uigemn...  ZEEEEEmEn. (D¥ 19 (D)]lr=ro
For simplicity we shall restrict the calculation here to elastic constants of the type C1_ in

Voigt notation. We shall also restrict the calculation to foc crystals and again assume central-’
force Born-Mayer potentials. We obtain from Eqs.(12) and (16) for orders up to five the

recurrence relations
c3® _ B2+ 3B + 3
aﬂu B I(B+ 1)

COyn _  B3+6B2+1SB + 15 .
[o.5) PR 2(BZ+ 3B + 3)

Gy B4+ 10B3 + 45B2 + 105B + 105
ardml - 2(BJ + 6BZ + 15B + 15)

The Born-Mayer B parameters are again obtained from Eq.(13) together with measurements of
the acoustic nonlinearity parameters p. It is clear from Eqs.(17) that all higher-order elastic
constants under consideration may be calculated from knowledge of B and measurements of

C(2)11= pv where p is the mass density of the crystal and v is the sound velocity along the
[100] direction. Since the Born-Mayer parameters are positive we see immediately from
Eqs.(17) that the sign of the elastic constant of a given order is opposite to that of the previous
order.

RESULTS AND CONCLUSIONS

Table IV shows the results of the calculations for several fee erystals. We see that in general
the magnitude of the elastic constants of each order is approximately a factor of ten larger than
the magnitude of the previous order and is opposite in sign. The value of the fourth-order
elastic constant calculated here for Cu is in complete agreement with the results of Garber and
Granatol8 who calculated the constant from a theory based on the measured temperature
dependence of the second-order elastic constants. Such agreement is surprising considering

the crudeness of the approximations made in both theoretical approaches. The present
calculations of the fi -order constants of Ag and Au differ from the Garber-Granato results
by approximately 30 percent, but again this is reasonable agreement. Fourth-order constants
tor Al have not been previously reported in the literature nor have values of the fifth-order
elastic constants for any material. They are reported here for the first time. Although
derivation of the complete set of independent fifth-order constants for crystals of riclinic and
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the most symmetric cubic classes is to be publishéd elsewhere, the results reported here for
C®)11111 is representative of the relative magnitudes and signs of these constants compared to
that of the previous orders.

Table IV. Values of elastic constants of orders two through five obtained from present
work (in units of 1012 dyne/cm?).

4
Crystal cf? | cfl cith ¢,
Cu 1.66 -12.7 104 ' -913
Ag 1.22 -8.43 63.1 -511
Au 1.93 -17.3 165 -1680
Al 1.07 -10.8 114 -1280

Finally, knowledge of the elastic constants is important in understanding the thermoelastic

ies of materials and in comparing anharmonic lattice theories with experiment. The
fourth and fifth-order constants in particular are found to make a considerable contribution o
the stress-temperature dependence of the sound velocity!? and calculations of these elastic
constants are necessary to compare theory and expeniment. The work here shows that
reasonable estimates of the values of the higher-order elastic constants can be obtained from a
relatively simple theory based on central-force potentials together with measurements of the
acoustic velocity and nonlinearity parameters.
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INTRODUCTION

Scanning Electron Acoustic Microscopy (SEAM) is a very useful tool for assessing near
subsurface structure of materials. If the focussed electron beam in a scanning e¢lectron
microscope is chopped at frequency f in the 105 10 106 Hz range the periodic heating near the
irradiated region of the specimen generates an acoustic wave at the same frequency. The
acoustic waves yield a scanned image signal via a transducer attached to the specimen and
lock-in amplifer system. Near surface and subsurface contrast with resolution in the range

0.2um to 10pm is produced by local variations in the thermal and elastic propertics of the
material as well as in electron stopping power and specimen surface topography.

The SEAM technique has two important advantages. First, it is easy to use and does not
require extensive specimen preparation. More importantly, the technique provides subsurface
information and delineates other specimen features not visible with images typically formed
from the secondary electron signal. SEAM analysis covering various aspects of materials and
device engineering (1) has become somewhat commonplace since its introduction by Brandis
and Rosencwaig(2) and by Cargill (3). But the interpretation of the image can be
complicated®-3) and is in some situations still not completely understood. The purpose of this
paper is to help clarify certain contrast mechanisms in SEAM by focusing on the relationship
berween the output signal of the receiving piezoelectric transducer (PZT) and the thermoelastic
properties of the sample. Our approach is to solve the thermal conduction equations for the
sample and PZT to obtain a two-dimensional temperature distribution which is then used to
solve the Navier-Stokes equation for the acoustic strain in the sample. Using the piezoelectric
equations we obtain the theoretical expression of the output signal from the PZT.

TEMPERATURE DISTRIBUTION
Sample PZT

We consider the sample-PZT system Region 0 1 2 3
as shown in Fig. 1. The lateral
dimensions of the sample and PZT Pg=1L:Ve
are considered to be infinite. We
assume that the electron beam is = 2
square-wave modulated at angular 0 in Li+1y
frequency © and the thermal power
density H(r,z,1) of the heat source
generated by the electron beam is
nominally of the form®:

Fig. 1 Sample-PZT System
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H(r,z.1) = (InPof/na?) exp (iwt —Plz-2z,l — 2r2a-2) : (N

where 1 is the fraction of the primary electron beam power Py converted to heat power and [ is the
electronic anenuation coefficient. The primary beam power Py = LyV,, where I is the beam current

and Vy is the accelerating voltage. P and z, are dependent on V and the properties of the sample.
The thermal conduction equations in the sample (Region 1) and the PZT (Region 2) are

VIT] — (1/o)@T1/0) = (-1/%1) Hir,z,n) " (Region 1) (2a)

ViTy - (oag)(oTya) =0 . (Region 2) (2b)
where o; is the thermal diffusivity and j = 1,2 represents the sample (1) or transducer (2). The
therrpal diffusiyiry and conductivity are related by the expression @ = xj/pjcj where pj is the mass
density and C; is the specific heat of the material.

The boundary conditions are assumed 1o be

oT(r,0,0)/0z = 0 . T (RO = T2 (r]1,k) (3a)
x19Ti(r1,0/0z = k23Ta(T 11,00z . . T2 i+l2,1)/0z =0 (3b)

We first write Ty and T in terms of Hankel transforms and obtain the general solution of Eq(2) as

Ti(rz,t) = (ei2) j[ T(B)e-Bizzol + A(8)e-017 + B(5)e®12 ] Jo(3r) 5B (4)
. o i
Tatrz.) = (€042) [ [ C(B)e-o2 1) + D(B)eo2(2-11) | Jo(r) 545 )
0

where

A®) = e Pro@n [(b1-1)d )2 - Br1+1)(d*)] - eBI-2[(by +1y)(d)g - (b1-r1)(d* )2} T (B)/H(E)

B(8) = - {riePro(dn((br+1)(d)z-(b1-1)(d*)a] + eBULZ0(by4r1)(d")2-(by-r  }d*)) )T B)/H(E) |

C(8) = - (M2 (eBM-Zo)(ry-1)(d-) + (r1+1)(d¥) ] + 2riePeo) T(BYH(E)

D(3) = - (d)2(e-F120f(r1-1)(d N + (r1+1)(d*N] + 2r1e-B2o) T(SYH(B) (6)

H(®) = dh((1+1)d )2 '.(bl'l)(d*')zl +{d@N[dr-1d ) - (br+1)(d*)a)

and where

T'(8) = nBPoexp(-a28%/8)/n2x1(c12-B2), oi2 =82 + o;2

02 = iy dit=ctqflj | by = X20%/%101 . n = f/oy.
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Using the property of Hankel ransforms

faas [ E®) o Ear = FO) (6a)
3 _

)
the one-dimensional temperature distributions of the sample and PZT are given by

Ti(zt) = 7[[(o)e-BizZol + A(0)e 012 + B(o)eT'1Z]eltt (4a)

Ta(z) = K[Cl0)e-a2 1) + D(o)ed 2 1Djeiest . (5a)

DISPLACEMENT DISTRIBUTION IN SAMPLE

The displacement u!)(ur,u,) at a point (1.2) in an isotropic slab of thickness 1 will satisfy the
Navier-Stokes equation;

V2u(l) + [ 1/(1-2v)]¥(Vou®D) - (2(1+v)py/E)32ul /2 = [2(1+v)ar/(1-20IVT] )

where v is Poisson's ratio, E is Young's modulus, p1 is the density of the sample, and ki is the
. elastic wave propagation number { k2 = @%/c1? where €12 = E(1-v)/p1(14v)(1=2v)). Using the
thermoelastic potential function Wi(r.z)ei™ and the relationships between y and u

Ur = a‘l’far » Uz = a‘Waz (8)
we obtain from Eqs. (7) and (8)
V¥ - (1 + VI(1-V)]y T +2¥ =0, )

_ The general solution of Eq.(9) is given by
W) = [er(12AV)] | [Ry@eikar® + Sy @eikal? + (10)
W) :
L(B)e-Pzo + M(B)e012 + N(8)e912)14(5r)8d

where

L) =T@/pHk12-8) , M(3) = AB)(01%+k1?-5)
N(5) = B(5)/(0 2+ky2-82) , k2 = 82+kqy? .
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Therefore the two-dimensional displacement u{1,(r,z) and stress 6{)5(r,z} in the z direction are

uDyrz) = [ep(1+vN2(1-V)] [(-ikz1[R1(B)e-¥zi? - §y(Byelka1?] - an
o .
(BT (B)e-Biz-zo/(B2+k;2-82)] - [G1[A(B)e 12 - B(8)eO12)/(012+k12-8%)])Jo(Br)8d8 , (2>%0)

oflyy(r,2) = [EN(14v)){0uz/oz + [W (1-v)](Bugor +ugr + duzfoz) - [(1+v¥(1-2v)]aTT1}

= [aTE2(1-v)] II52-k12(1-v)f(1-_2\’)1[Rl(ﬁ)e‘“‘z]z +51(B)ekzIz + )
0. ) .
[r(a)e-ﬁlz-%'/(ﬁz-rklz-ﬁz)i + [A@)e012 + B(8)eO1Z)/(012+k ) 2-82)} 1o (Br)Bdd

From Eq. (6a) we get the one-dimensional displacement and stress

uDy(z) = [mer(1+v¥(1-v)]{-ikDR (@ k12 - $1(0)eik1Z] . (11a)
Ar)e-P-2ol(P2+k;2) - G1[A(0)eT1Z - B{0)I1(012+k1?)} , (2> zo)

oty5(z) = [naTEK 2/(1-2v)] (R1(O)e k12 + §1 (0)eikiz + {12a)

[T(Q)e-Bz20(F2+k )] + [A(Q)eT1Z + B(D)eT17]/(012+k1 D]} | (z>20)
where Ry(o) and Si(o) can be determined by boundary conditions.

DISPLACEMENT DISTRIBUTION IN PZT

If the polarization direction of the PZT disc is along the Z axis, the piezoelectric equations are
given by -
0z = ST (Buy32) - fE; - MT2 (13a)
D, = eJ@uz/02) + €¥'E, +p§ T2 (13b)

where SET is the compliance coefficient, ¢T the piezoelectric constant, AT the thermo-stress

constant, €5T the dielectric constant, pS the pyroclectric constant, E; is the component of the
clectric field along z, and Dy is the electric displacement along z. The temperature T3 in the
PZT is given by Eq.(5a). :

From Eq{13) we get

Proc..O.A. Val 11 Part 5 (1989)
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oDy, = 5*(@QuT 32y + A"T2 - ATy (14)
where

s* =SB+ el 2esTy . A= fpdeSh-a L nt=efaY

If there is no space charge within the PZT, as for insulating crystals or ceramics, divD = o and
2D,/8z = 0. The equation of motion is given by

p202u@n?) = 36D,z = 5°(F(),/322) + A" @T2/dz) (15)
The general solution of Eq.(15) is given by
u,(z) = Ry(0)e-k2(z-11) + So(Oeik2(z11) + (16)

[A*a2m/S°[(0'2)2 + (k2)2]} (C(O)e 21D - D(0)e 2= 1)) .
If the output terminals of the PZT is open, D; = 0. Thus, from Eqs.(14), (16), and (3a), we get
6Dyy(2) = -ikaS [Ro(O)e-I2E1D) - Sx(0)eik2Az-1] + (142)
(A*(22rA(2)? + (k22 H{C©O)F2E1) + D)2}
Using boundary conditions

G(])ZZ(O-t) = 0 ’ G(l)u(]l-t) = U(Z)z.z(ll-t) L} Umz(ll.t) = u(z)l(lllt) v 0(2)72(1|+12,t) = 0 -

we obtain the coefficients
R(0), $2(0) = [-17Yk2Qe+1K212 + QulkyyC*cosky]] + iYkjsinkil1] + iYkyQaetik2l2sinky]y

+ iyQuetik2Rcosk, 1, } / 2i(Yk;sink) ] coskala - k¥5°*cosk l)sinkzl2) (17
where the up signs are for R2(0) and the down signs for 52(0), and

Q1 = -{[0eB2o)(B2+k) ) + [A(D) + BOV(012+k1D)} . 7= rar(1+v)/(1-v)

Q = [ -irA"k/S" (0'22+ko D)) [C(M)e 022 + D(O)eT212] Y = —garEA1-2v)

Qs = {- " 0(C0) -DOVS (022+k?) - (17a)
YBr0e-Bh1-20)/(B2tke2) - v0'1 (A1 - B0)eT11]}A 0 12+k12)]

Qs = TA"K22{C(0) -DO)V(0'22+k3?) -
Yk 2{T(0)e-B01-20)/(B2+k12) - [A(0)e-0'111 + B(0)eS111]/(0'12+K1 D)} .
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OUTPUT SIGNAL OF PZT

If the output terminals of the PZT are open (i.e. D; = 0) and the pyroelectric effect is ignored, the
PZT output signal can be obtained from Eq.(13b), (16) and {17): )

Li+l2

v = Jl/efad | Qudyndz. o (18)
1 . S

(T2 65T A){ RyO)eik2h2 - 1) + S2(0)(eik2i2 - 1) +

[xA" 02 /5" (022 +ka?)][ CO0)(eo22- 1) - D(O)(e¥22-1) ]
where Aé is the coupling area between the sample and PZT.
Usvally, the sam]ile and PZT in SEAM are considered to be thermally thick (i.e. the linear

dimensions are larger than a thermal wavelength). In this case, the output signal V can be
approximated as the sum of an acoustical and a thermal wave signal as

V = Vacopst + Vinermal = G + Vibermal {18a)

where

G = klsinz(kzl_ﬂ) ! kiCrisinkqljcoskals + sz'cosklllsinkzlz_) .
@ = Doki( 1+ki /o' 12 4P 12 -Blot) f 2By o+ BA(1-Big) . (18b)
@ = deThoTEnPe Bl meTAki(1-2v),  Cut = E(LVI(I+vX1-2v)

Vihgrmal = TedlA] ol () eBU170) + 2rye-Brod'ln] /5T A8 (6 2+k22)(b1+1)  (19)

The factor G describes the purely acoustic properties of the sample - PZT system. The condition
P1Citank;]y = -p2Catankzly

produces system resonance where C) and C; are the longitudinal wave velocities in the sample and

PZT, respectively. The factor ¢ describes the thermoelastic properties of the sample. The Vgeoust
signal detected by the transducer is thus determined by the sample thermoelastic properties but is
modulated by the purely mechanical vibrational response of the sample - PZT system. There are
six limiting cases of interest for this signal as shown in table 1.
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Table 1. Six limiting results for factor ©

Coe Licing Relan Limions Resul
1 B>>1042] > k2 -Ogk) /o3
2 1a121>> B2 >> k2 ®ok; /Po'i?
3 B2 >> k12 >>1 0421 &y /01Ky
4 k12 >> B2 >> 1621 D, /a'1K1
5 1012135 k12 >> 2 Do /0°12K1
* & ki2>>1021>> p2 P /012K

At typical operating frequencies (0.1 - 1.0MHz) the thermal signal is small in compa.rison-to the
acoustic signal. Nonetheless Vinermal has two limiting cases worthy of mention for transducers

having a large value of l}. Usually I’z | >> k2 in the frequency range 0.1 - 1 MHz. Then,
when f>> 1 a1, .
Vinermal = - 2eJoAInPoeB2oo'11 / reYT A28 K1 (D1 +1)0'10°2 (19a)

The signal is thus proportional to the beam power Py and co'l. When f<<i o'y,
Vierma = eJAInBPoeBli-20)/ meS A28 ki (b1 +1)0'120%2 (19b)

In this case, the output signal is proportional to BPg and w372,
DISCUSSION AND CONCLUSION

Eq.(18) shows that an AC heat source can generate both thermal and acoustical signals. Although
the thermal wave artenuates very rapidly, information about the thermoelastic properties of the

region is carried by the acoustical wave and received by the PZT. The amplitude and phase of the
PZT output signal depends on the thermal, mechanical and electrical properties of the sample since

Vacoun ~ OTE/%)(1-2v) , Vihermal ~ @1/ (X101 + X207) .
If there are variations of these parameters in the irradiated region, we will get image contrast.
The relationship between the signal and beam power P, has been experimentally determined(>).
When the modulating frequency is in the range 0.1 - IMHz and the thickness I; of the sample is
about 1 - 3 mm, the sample may be considered 1o be thermally thick. We may estimate 3 as

Bxllzg= 20p1/Vol43.

Proc..O.A. Vol 11 Part § (1989) ' 459



Proceedings of the Institute of Acoustics

PIEZOELECTRIC DETECTION OF SIGNALS ..

For copper, for example, f = 1.39um-! and | o'| | = 0.08um-1 when Vo =30kV and f=

235kHz (case 1 of Table 1}, both Vaepust and Vihermal are proportional to the beam power Py,

These findings are in agreement with the experimental results of reference [5). -
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