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INTRODUCEION

A diversity of naturally occurring phenomena show a random geometric structure

which appears similar over manydecades of length scales. Examples are

turbulence in fluids and in the atmosphere, coastlines, the "surface" of clouds

and the trajectories of heavy particles which are scattered by light ones

(Brownian motion). Mandelbrot [1] has coined the generic word "fractal" to

describe such multi—scale "self—similar" objects. In this paper we shall be

discussing the statistics and correlation properties of high—frequency waves

which have encountered one such fractal object and we will assume the

geometrical optics limit. As pointed out by Berry [2], the geometrical optics

limit needs some care since, strictly speaking, a fractal is non-differentiable

(though continuous). However, demanding that the eminating wavefront be once

differentiable, ie that its slope is fractal, ensures that the geometrical

optics limit is valid (Jakeman [3]).

For true fractals it is known (Berry [2]) that the intensity fluctuations of the

scattered wave are weak whereas for the so—called "smooth" scatterers which

produce wavefronts that are at least twice differentiable, there occurs very

large fluctuations in intensity (infinite in the geometrical optics limit) when

such wavefronts propagate in free space (see eg Berry [4]).

Wavefronts with fractal slopes, on the other hand, give rise to intensity

fluctuations which can take all intermediate values depending on the so—called

fractal dimension (Jakeman [5], Jakeman and Jefferson [6]) and thus represent an

important classification of scatterers worthy of further study.

Although it? is a relatively straightforward matter to devise a simple

mathematical model to describe the statistics and correlation properties of a

fractal wavefront, a determination of how these properties change when the

wavefront propagates is fraught with mathematical difficulties. Indeed, this is

not perculiar to fractals; very few statistical models yield analytical

solutions for the statistics of the propagating wavefronts and even a

computation: of the second-moment of intensity (contrast) often proves laborious.

One exceptilon is the case when the slope of the wavefront is a so-called

Brownian fchtal for which the statistics and correlation properties may be

derived exactly (Jakeman [3]). It is this exact solution which motivated the

present work. ~

The intention was to simulate the Browninau fractal—slope wavefront on a

computer and investigate the statistics and correlation properties of the

eminating rays in the geometrical optics limit, comparing the results with the

know analytic solution. We could then investigate the effects of finite size

(inner and outer scale) and subsequently, with some confidence, apply the same

computational techniques to other "non-Brownian" fractal-slope wavefronts for

which the statistics are not known. The "discretised" Brownian fractal-slope
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model turned out to be an interesting problem in its own right which also

yielded exact solutions that could be compared directly with the simulations and

it is these results which will now be presented.

mum. Am) THEORY

If a plane wave is passed through a narrow regionof turbulence or reflected.

from a rough surface then, assuming that the effect of the medium is to change
only the phase of the wave, and taking the geometrical optics limit, an

eminating wavefront may be described entirely by the random function m(:c)-, the

gradient of the wavefront at point LT

The model we shall take for mac) is that of a Bromian fractal which, when m(a:)
is discretised, may be generated by the recursion relation

mn” = mu 4» A/Z 57H] (1)

where the random numbers E7; grad—correlated and have unit variance; A is the

step—length and Z is a constant. Equation (1) is just the discretised Langevin

equation for the one—dimensional Brownian motion of a free particle in a

"frictionless" medium. The iterated solution to (l) is

n

m" = VA/Z 251. (2)
.:0

from which we easily deduce

2< — :
(mn+n’ mn') > xTL/Z

where In = 11A is the displacement and the angular brackets denote ensemble

average. We note that m satisfies an "affine" scaling law ie equation (3)
remains invariant under 7the transformation an —> Rx", mn -> kgmn . This is shown
in figure 1 where we have scaled the propagation direction linearly and the

screen (at-direction) quadratically, with Z = A = 1 and £7; = i 1. The ray

diagrams look statistically equivalent in the sense that the rms change in slope

over the screen widths is similar in all diagrams. We note, however, that there
is a regular focussing of rays at various propagation distances, particularly in

the first diagram, and that this is most pronounced at odd integral values of 2.

They occur because the rays have been generated on a uniform grid, A = l, and

because 5i = i 1 (giving an approximately gaussian distribution formn , since 71

is large). However, this is an inner-scale (discretisation) effect which is

really inescapable since even if ‘A were randomised and 6,; had some other

statistics, eg Gaussian, there would still be "fuzzy" focussing. This regular
(periodic) focussing does however disappear when the rays are viewed on a larger

fWe shall only consider a one-dimensional or "corrugated" wavefront which has

constant phase in the y-direction and propagates in the z-direction.
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scale, as expected (see figure 1D_) and indeed the pattern becomes independent of
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the statistics of En . (A consequence of the central—limit theorem.)
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Figure 1. Ray diagrams under affine scaling transformations. Dashed lines
denote boundary of previous diagram.

Using the fact that at odd integral Z-values the focussed rays lie on a grid

with a spacing of two, together with the Markovian property of mi and

combinatorial analysis, we have been able to show that the factorial moments and

correlation function for the number of rays crossing the grid points are given

by the following expressions [7].
m 21 _ m-l

C
= _ _ _ Z(Z+z)/2

km(z) _ <ni(ni 1} {ni m+1}> - m! (4)

1:1
I

and on '[j+ztIc
‘ 2 .

cj(z) E (nini+j> : ZW, J 3 2 (5)

t:—:::
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where n1: 2 n52) is the (random) number of rays crossing grid point i at
distance 3 (odd-integral) and the prime on the sumation in (5) means preclude

all ’5 <0 lying between -j/(z —1) and -j/(z +1). Equations (4) and (5) are exact.

They are particularly simple for two cases;2 = 1 and z -> so. At a = l (the

first focussing regionflcm (1) =m! andc-(l) = 2, showing that the m; are

5-correlated. It is straightforward to invert the factorial moments to give a

probability distributionfh(1) = (%)n+1. These results can, in fact, be

obtained much more simply by noting that only adjacent rays can intersect at the

same grid point at z = 1 (see figure 1A) and that the probability of no rays

passing through is exactly i. Thus Pn= (f)".% where, for n> 0, the first factor
is the probability that 71 adjacent rays will converge onto the grid point whilst

the remaining é is the probability that the next ray will not. Once the chain

of adjacent converging rays is broken no other rays can ever converge to the

same point at z = 1 and thus the number of rays at different sites are

independent (fi-correlated). Thus we have a very simpledemonstration of how the

highly correlated Gauss-Markov process mi is transformed into a G-correlated

process 71-; with non-gaussian statistics.

The 5—correlation occurs only at z = 1. As 3 increases, near—neighbour sites

become increasingly correlated and we canin fact show that for large 2 the

correlation length increases quadratically with 2, an effect which is seen

clearly on the ray—diagrams. Using Stirling's formulae to approximate the

combinatorial factors in equations (4) and (5) it can be shown [7] that for

large 3 (odd-integral) km(z) —> m!(2)""1 and c '(z) —> 2[1 + exp(—2j/zz)]. Again
km(z) can be inverted to yield Pn>0(z) 2 (2/3 "+1/4 with 130(2) 2 2/3. For
j<<zz ray numbers on different sites are almost fully correlated and using this

fact it is not difficult to show that the mean ray density over a length Zj, ie
RJ- : (up-112+ nj)/2j has moments (ij> : m!

More precisely, we can show rigorously that

<R.m> 1—» m!
J Jug—’m

.7722 + 0

and thus, in this limit, P0?) = e_R, a result obtained by Jakeman [3] directly
for the continuum limit. '

SIMULATION

To check the analysis outlined in section 2, we have performed computer

simulations generating several hundred Brownian walks each with 100,000 rays
using equation (1). Theoretical plots of the first six factorial moments are

plotted in figure 2 (solid lines, of equation (4)) together with the simulated
» values and theoretical asymptotes (3 " °°, dashed lines).
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First six factorial moments,— theory, -—- asymptotic values, +
simulation (100 runs of 100,000 rays).

These plots show good agreement between theory and computer "experiment" but it
should be noted that convergence to the asymptotic values is quite slow. This
is purely an inner-scale (discretisation) effect showing that, in general, care
should be exercised when attempting to extract asymptotic statistics from
simulations of wave-fields which have passed through multi—scale refracting
media.
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