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In a small room, rectangular or not, eigenmodes cannot be avoided and are part of sound distri-

bution in the enclosure. The aim of the present work is to compare different metrics used in the 

assessment of low frequency quality in rooms used for critical listening. These parameters differ 

in the way they consider the magnitude and the spatial distribution of eigenmodes.  A figure of 

merit obtained from a best fit curve over frequency response and acoustic entropy are evaluated 

in 324 rooms from 30 m3 to 100 m3 using a theoretical approach based on the modal decompo-

sition method for a rectangular enclosure. The studied parameters are compared in order to 

establish similarities and differences among them, as well as their relationship with the Bonello 

Criteria. Significant correlation between entropy parameters and the figure of merit were found. 

The Bonello Criteria proved to be a misleading metric for the selection of ideal rooms dimen-

sions used for low frequency reproduction. 
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1. Introduction 

The quality of room mode distribution in small rectangular rooms has frequently been studied, but 

there is no clear consensus whether it exists or not ideal dimensions for the low frequency reproduc-

tion.  

Several authors [1, 2, 3, 4] selected modal density and/or modal spacing using different method-

ologies. They generally consider that a homogeneous distribution of room modes would lead to a flat 

spectrum. However, this approach does not take into account the interaction between individual res-

onances, the source-receiver positions, nor the classification between axial, tangential or oblique 

modes. Some of these authors proposed ideal room ratios that disregard volume considerations and 

the interactions between the room response and the stimuli, which have been proved to be misleading 

[5]. 

Cox et al. [6] suggested an interesting methodology to optimize room dimensions and source-

receiver positions in a room. It is based on a figure of merit derived from the minimum quadratic 

error of a best-fit curve interpolating the room frequency response from 20 to 200 Hz. The criterion 

searches for the flattest spectrum.  Compared to the previously mentioned parameters, this metric 

proved to be, through subjective evaluations, a useful parameter to determine room dimensions and 

sound quality at specific positions inside a room [7]. 

Over the last decade, several authors demonstrated the need for further study over temporal aspects 

of resonances and their relation with the perception of room modes [8, 9, 10]. Besides temporal pa-

rameters for room evaluation of low frequencies have been proposed [11], this paper only considers 

frequency metrics.  

The present work aims to compare different quality metrics for the low frequency reproduction in 

rooms from 30 to 100 m3. Two parameters are proposed for the assessment of low frequency quality 
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in rooms, the spectral entropy and the spectral multiband entropy. They are compared with the crite-

rion of a figure of merit derived from a best-fit polynomial. All the parameters are compared with 

each other to find correlations and dissimilarities among them and their relationship with the Bonello 

Criteria. 

2. Theoretical Background 

2.1 Modal Decomposition Method 

 

The Modal Decomposition Method (MDM) corresponds to the analytical solution of the inhomo-

geneous Helmholtz equation in a parallelepipedic room. This method can consider the influence be-

tween source and receiver positions and damping characteristics of the room. Although this approach 

is not perfectly correlated to measurements it gives a clear idea of the low frequency response in a 

room.    

The room response at angular frequency (𝜔), due to a point source excitation with volume velocity 

(𝑄), is given by Kuttruff [12]: 

 𝑝(𝒓) = 𝜌0𝑐2𝜔𝑄 ∑
𝜓𝑛(𝒓)𝜓𝑛(𝒓𝟎)

Κ𝑛[2𝛿𝑛𝜔𝑛+𝑗(𝜔2−𝜔𝑛
2 )]𝑛  (1) 

In Eq. (1), 𝜌0 is the media density, 𝑗 = √−1, 𝑐 is the speed of sound and 𝜓𝑛 are the eigenfunctions 

depending on source (𝒓𝟎) and receiver (𝒓) positions. 𝜔𝑛 is the angular frequency for the mode 𝑛, 

while 𝛿𝑛 corresponds to its damping constant. Finally, Κ𝑛 is a dimensional constant (Pa2m3). 

For a rectangular room, the eigenfunctions are equal to: 

 𝜓𝑛(𝑥, 𝑦, 𝑧) = 𝐶 ∏ cos (
𝑛𝑞𝜋𝑞

𝐿𝑞
)𝑞=𝑥,𝑦,𝑧  (2) 

Where, 𝐶 is an arbitrary constant, and 𝑘𝑛𝑞
=

𝑛𝑞𝜋𝑞

𝐿𝑞
 are the eigenvalues of the function. They de-

pend on the mode number, the dimensions of the room, and the source and receiver position. 

2.2 Figure Of Merit 

The Figure Of Merit (FOM) is obtained from a best-fit polynomial over the room frequency re-

sponse. In order to obtain such figure, it is necessary to first interpolate a polynome over the Root 

Mean Square (RMS) frequency response in a dB scale to evaluate the smoothness of a response. Then, 

the difference between the RMS magnitude response and the smooth curve are calculated for each 

frequency bin and a mean value is calculated to deliver a single FOM value. This value is normalized 

to reach a scale between 0 and 10 dB of mean deviation, corresponding to the range between 1 and 0 

in a dimensionless scale. This approach has already been discussed by Wankling and Fazenda in [7]. 

2.3 Bonello Criteria 

The Bonello Criteria [4] include several conditions to evaluate room mode distribution. A signifi-

cant difference of this criteria compared to previous studies is its dependence on the real dimensions 

and not on ideal ratios.  

To determine if a room is acceptable, the first 48 eigenfrequencies are computed and ordered in 

ascending manner. Then, the number of modes per third octave bands is calculated, obtaining a den-

sity curve. If the density curve increases monotonically, although plateaus might be accepted in case 

of adjacent bands with equal density, and no modal overlap in any band with less than five modes are 

found, then the criteria is considered to be fulfilled. 

Welti [13] proposed a different approach to the Bonello Criteria by counting the number of viola-

tions of either the density curve or modal degeneracy. In this paper, a parameter, Bonello Total, Eq. 

(3), is considered and takes into account two metrics: Bonello Density and Bonello Degeneracy. They 

are, respectively, the number of violations of the density curve and the number of overlapping fre-

quencies over a 2 Hz span. 
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 𝐵𝑜𝑛𝑒𝑙𝑙𝑜 𝑇𝑜𝑡𝑎𝑙 = 𝐵𝑜𝑛𝑒𝑙𝑙𝑜 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝐵𝑜𝑛𝑒𝑙𝑙𝑜 𝐷𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦 (3)         

This allows a more refined analysis of the criteria, being less restrictive than a simple Pass/Fail 

analysis. 

2.4 Acoustic entropy parameters 

The authors of this work propose the acoustic entropy for the assessment of low frequency quality. 

The entropy can be used in audio analysis to inform the peakness of a Probability Mass Function 

(PMF). Sound signals, either in time or frequency domain, are first transformed into a PMF before 

obtaining their entropy values.  

Acoustic entropy has been previously used in several fields from the assessment of biodiversity in 

ecosystems [14] to the identification of transient events in audio signals [15]. In the present work, 

three models of acoustic entropy are used: the Temporal Entropy, the Spectral Entropy and the Spec-

tral Multiband Entropy.  

2.4.1 Temporal Entropy 

The first step to obtain the Temporal Entropy (HT) is to transform the signal into a PMF, called 

𝑇(𝑛). 𝑇(𝑛) is calculated by: 

 T(𝑛) =
|ℋ{ℎ(𝑛)}|

∑ |ℋ{ℎ(𝑛)}|𝑁
𝑛=1

 (4) 

In Eq. (4), |ℋ{ℎ(𝑛)}| is the absolute value of the Hilbert Transform of the discrete impulse re-

sponse and 𝑁 the length of the impulse response. Notice that ∑ 𝑇(𝑛) = 1𝑁
𝑛=1 . 

Once the PMF is obtained, the total HT is evaluated by: 

 HT =
− ∑ 𝑇(𝑛) log2(𝑇(𝑛))𝑁

𝑛=1

log2(𝑁)
 (5) 

According to (5), values are limited in the range of 0 to 1. The highest values in the scale are 

obtained for equiprobable distributions, as any function with an almost constant envelope, like Gauss-

ian noise, while the lowest values are obtained for irregular distributions, as a Dirac Delta function.  

2.4.2 Spectral Entropy and Spectral Multiband Entropy 

The Spectral Entropy (HF) is defined in a similar way as HT. A PMF for the spectrum, called 

𝑆(𝑘), is obtained using a similar procedure as in Eq. (4) but taking the power spectrum instead of the 

Hilbert Transform. Thus, the HF for a complex spectrum is:  

 HF =
− ∑ 𝑆(𝑘) log2(𝑆(𝑘))𝑁

𝑘=1

log2(𝑁)
 (6) 

Equiprobable distributions, for example a flat frequency response, would result in high HF values 

while an undamped resonance corresponds to low entropy values. 

To compute the Spectral Multiband Entropy (MBH), the spectrum is first partitioned into several 

frames. Each frame is then divided into sub-frames. The energy of each sub-frame is calculated, this 

corresponds to a smoothing process of the frequency response. Eq. (6) is applied to each frame, omit-

ting the denominator, which is a normalization parameter, resulting in an entropy profile. MBH can 

then be obtained as a single value from the average of the different frames. 

The difference between MBH and HF is that the latter captures a global picture while MBH pro-

poses a more refined analysis.  

3. Experimental Procedure 

A single source placed in a corner of a room and a receiver at the opposite corner were considered 

for each of the rooms. Although this condition does not correspond to a real listening configuration 

it is consistent with previous studies and it better correlates with the conditions assumed by the 

Bonello Criteria.   
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324 rooms were considered for the simulations with dimensions in length and width between 2 

and 9 m and a fixed height of 2.7 m. The increasing step rates in each dimension were fixed to 0.1 m. 

From all the possible rooms in this volume range, only those between 30 and 100 m3 were selected, 

with an increasing step of 5 m3. A constant absorption coefficient of 0.05 was considered for the 

walls. 

The MDM was employed to calculate all the room frequency responses with a sampling frequency 

of 512 Hz and an FFT size of 2048 points. To obtain the temporal response, an IFFT was computed 

over the frequency response. Then, this response was filtered using a bandpass FIR filter from 20 to 

180 Hz with 61 taps.   

For the frequency related parameters, like the FOM, the HF and the MBH, the spectrum obtained 

via the MDM was limited from 20 to 180 Hz. All the calculations were performed over this range of 

frequencies, which corresponds roughly to three octaves. 

The MBH was analysed using three different configurations, which are classified according to 

their frame size. Table 1 summarizes their length. 

Table 1: Frame size for the MBH parameters 

Parameter Name Frame Size 

MBHT 
Third octave resolution for 31.5 to125 Hz oc-

tave bands 

MBH12 
12 Hz frames with constant bandwidth with no 

overlap 

MBH2450 
24 Hz frames with constant bandwidth  and 

50% overlap between frames 

 

The frame sizes are here proposed by the authors since there are no previous studies that suggest 

an ideal frame width or overlap degree that may consider perceptual factors. The sub-frame size was 

determined by calculating the ideal spacing between two resonances predicted by the HT. This pa-

rameter is correlated with decay time, so it is expected that the HT will tend to predict the smallest 

decay produced by the interaction between two close resonances. Finally, the MBH related parame-

ters were normalized to entropy values obtained by an equiprobable distribution for each frame. 

4. Results 

The mean value and standard deviation for each parameter considering every room are displayed 

in Table 2.   

Table 2: Mean values and standard deviation for the 324 rooms.  

 Mean Standard Deviation 

FOM 0.5229 0.05435 

HF 0.8823 0.01483 

MBHT 0.8156 0.03453 

MBH12 0.8127 0.03056 

MBH2450 0.8259 0.02829 

 

In general, the entropy parameters result in higher values than the FOM but with less deviation. 

The HF shows that values are compressed in a smaller scale compared to the other values. This is 

probably due to the general approach that the HF follows. 

The correlation between the FOM and the entropy parameters were calculated. Table 3 shows the 

Pearson’s correlation coefficients. 

 

 

 



ICSV24, London, 23-27 July 2017 

 

 

 

ICSV24, London, 23-27 July 2017  5 

Table 3: Pearson Correlation Coefficient for the FOM against the entropy parameters. 

 HF MBHT MBH12 MBH2450 

FOM 0.348** 0.524** 0.572** 0.673** 
      ** p < 0.01   
     
Statistical significance was achieved in each case. The HF has a weak interaction with the FOM, 

however, as the more refined definitions using frame subdivision were included, correlation tends to 

increase reaching a significant correlation with the MBH2450.  

To further investigate the correlation, dispersion diagrams were created and analysed for each case. 

Judging from the correlation values and the dispersion plots, the selection of the frame bandwidth in 

the MBH parameters affects directly its results. For example, the highest correlation between entropy 

values was achieved between the MBH and the MBH12 (r = 0.590, p < 0.01) while the MBH2450 

achieved moderate interaction with the MBH (r = 0.468, p < 0.01) and slightly higher with the 

MBH12 (r = 0.535, p < 0.01). This poses the question whether there is an optimum frame bandwidth 

for this frequency-based parameter. 

Furthermore, the linear regression models show that no clear correlation between variables can be 

obtained. For example, the highest coefficient of determination was 0.453 for the FOM against the 

MBH2450 parameter. It highlights the existence of contrast cases. A subjective based study should 

be performed in order to determine if a parameter is better to determine the low frequency quality 

characteristics or in order to determine if there are noticeable variations between this responses. An 

analysis of this two cases was performed, one with the FOM variable and the MBH2450 constant, 

and vice versa. Values for the FOM and the MBH2450 parameters are shown in the labels of Fig. 1.  

 

Figure 1: Contrast between variable FOM and constant MBH2450. Frequency response (above) and 

entropy profile (below). Room dimensions are 6.6 x 2.5 x 2.7 m and 4.7 x 7.9 x 2.7 m for the highest 

and lowest FOM values respectively. 

From Fig. 1 visual evaluation the FOM variation seems to be justified. Entropy parameters seem 

to evaluate more peaks than notches. It can be observed, for example, for the last frame where a deep 

notch around 176 Hz is present for the solid curve. In the entropy calculation notches are informed 

from subsequent peaks, this is only valid for the cases where an anti-resonance is followed by a res-

onance as in the region from 63 to 75 Hz for the solid curve. Fig. 2 presents the opposite contrast 

case. 
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Figure 2: Contrast between constant FOM and variable MBH2450. Frequency response (above) and 

entropy profile (below). Room dimensions are 4.3 x 6.9 x 2.7 m and 7.6 x 2.2 x 2.7 m for the highest 

and lowest MBH2450 values respectively. 

Fig. 2 shows that a clearer picture of the judgement of peaks by entropy parameters is obtained. In 

the region from 80 to 120 Hz, high entropy values are registered for one room in comparison to the 

other response. It seems to be a more regular pattern in frequency distribution, so further analysis 

between modal density and entropy parameters should be performed. It would be interesting to study 

if variations in this profile can be distinguished through a subjective test. Considering a single value 

for the MBH is not enough and deviation between frames should be informed. Finally, a constant 

bandwidth might not be the best choice for entropy parameters, since it does not follow the increase 

in modal density as frequency rises, resulting in a less detailed analysis between subsequent reso-

nances.   

In either case, the correlation among these metrics shows that a very general tendency can be 

established for best versus worst cases, which is a good starting point to compare these parameters to 

the Bonello Criteria. Besides, the apparent relation of entropy parameters with density might lead to 

a more fair comparison. 

4.1 Bonello criteria 

Eq. (3) was considered to test the Bonello Criteria. The values for each room were computed and 

a correlation analysis was performed. Table 4 shows the linear correlation coefficients between the 

Bonello Total and the frequency-based parameters.  

Table 4: Correlation analysis between Bonello Total and Frequency-based parameters 

 FOM HF MBHT MBH12 MBH2450 

Bonnello Total  -0.176** -0.063 0.045 -0.157** -0.231** 
  ** p < 0.01   

 

HF and MBHT show respectively that the correlation with the Bonello Total criteria is not signif-

icant. The two parameters previously compared with each other, the FOM and the MBH2450, achieve 

low correlations with the Bonello Total criteria of 0.176 and 0.231 respectively with a significance 

level of p < 0.01. For these two metrics boxplots were created as it is shown in Fig. 3. It can be 

observed that the standard deviation is high, although a tendency for the mean values of FOM and 

MBH2450 can be seen. Standard deviation values and quartile ranges show that the Bonello Criteria 

does not seem to give a clear result about room quality of low frequency. In fact, the best rated rooms 

for the FOM present violations of the Bonello criteria. The MBH2450 gives high values for the 

Bonello Total values of 0. The highest rated room (of 6.6 x 5.6 x 2.7 m) falls in this category, being 

similar in dimensions (7 x 5.3 x 2.7 m) to those recommended in IEC 60268-13 [16]. It seems to be 
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a good point for the Bonello Criteria, however, the standard deviations show that it might be a mis-

leading metric for quality classification of rooms at low frequencies.  

 

Figure 3: Boxplots for FOM (left) and MBH2450 (right) against Bonello Total.  

5. Discussion and Conclusion 

The present work presented the evaluation of several metrics related to the assessment of low 

frequency reproduction quality in small rooms. Entropy parameters were proposed as alternatives for 

the evaluation of modal response in a rectangular room. Correlation between the entropy parameters 

and the FOM was performed showing significant correlations with MBH metrics. 

Several questions concerning the entropy parameters still have to be analyzed. First, this research 

did not determine if there is an ideal bandwidth for the MBH, considering both sub-frames and frames. 

A correct bandwidth could define better the fine frequency analysis and establish if the entropy profile 

is a useful parameter in the identification of resonances Secondly, the importance of peaks instead of 

notches of the entropy functions needs further analysis and possibly a redefinition of MBH. For ex-

ample, phase or group delay changes could be considered to identify anti-resonances.  

Although the FOM showed to be a useful metric in the assessment of low frequency quality, its 

definition could be seen as too general since it evaluates the global deviation of the spectrum. Besides, 

no weighting is applied to notches and peaks in the frequency distribution, this should be considered 

in a redefinition of the parameter. The interaction between resonances could possibly be taken into 

account by entropy profiles and then related to the FOM’s results. 

Under the assumptions considered by Bonello of a coupled source-receiver system, it seems that 

this criterion does not always perform a good estimation of the low frequency reproduction quality. 

It highlights the fact that more robust parameters should be developed to characterize small rooms in 

this range of frequencies. 

Finally, the simple approach employed here should be extended for the whole room using a grid 

of receptors and different source positions. This point is currently being investigated. 
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