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_- . ABSTRACT

Primary quantities for estimating the performance of acoustic
aperture systems are the total power in the received signal and the
directional resolution of this power. This paper summarizes some work
done on developing propagation models to predict these quantities for
ocean acoustic experiments. The models can incorporate diffraction and
refraction effects as Well as a stochastic volume scatter. The incorpo—
ration of a randomly rough boundary interaction is planned.

INTRODUCTION

The propagation models to be discussed are formulated in terms of
an acoustical fielddmea'sure termed a directional spectral density. De-
noted by [15,?) ( [PG/7;, )j when discussing stochastic fields), this
measure provides a resolution of the (averaged) paler flux through an
elemental aperture positioned at {S into a continuum of directions
represented by .

The relationships between this description of the acoustic field
with others that are more familiar are of interest. A discussion is
available [1]. We note here that a classical ge'aretric description is _
obtained as a limit in which the continuous spectrwn, measured by FOL-995 ,
is replaced by a discrete spectrum, measured by the acoustic intensity
l(>_f)and a single ray path direction (a finite number of ray paths if one
allows for a multipath structure). We note further that Pants) can also
be related to a plane wave decomposition of the acoustic field itself.
In drawing a precise mathematical equivalence between the [i (I: (a) measure
and the plane wave decomposition, it is necessary to introduce an averag—
ing. In discussing deterministic fields the averaging is over either a
region of >3 space (a finite aperture) or a region of (3 space (a
cone of directions) with the ectent of the averaging windows being gov-
erned by an uncertainty principle. In discussing stochastic fields that
can be termed locally homogeneous, the averaging can be interpreted as an
ensemble averaging.

Referring to the work of Clarke [2] is helpful in placing our
models in context. Clarke formulates his ideas in terms of a plane wave
decomposition of the acoustic field. Thus, as the above paragraph implies,
there is a strong similarity between some of his ideas and some of ours.
'IWo important distinctions, however, can be drawn. One is that POLE)
cannot be precisely equated to the directional resolution of the acoustic
field itself but of the power flux in the acoustic field. Secondly, in
discussinggstochastic fields, a statistical averaging is implied in our
measure ifOfigfl} . Thus {fl filg)}is a deterministic field variable;
Clarke's plane wave decomposition, when applied to stochastic acoustic
fields, is a stochastic field variable.
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THE PROPAGATION MODEL

A propagation modelfor predicting the evolution of [1401; g) in a
deterministic but possibly inhomogeneous medium is presented in Re er— ‘
ences [3, ‘4]. 'The' model is described by the statement that {fix dfiis a

._.constant along ray paths. Thus, the vaue of {' r‘f for a specific 3'3 and '
specific g is given by that associated with the ray path thatpaSseS
through the point of 1‘, in the direction :3 '. To apply the model we

_ assume that {1"} values are known for all points on a given "source"
plane and for all directions. _Ray paths are then launched frcm each point
onthe source plane in all directions; and values of r} are assigned
to each ray path so launched, according to this initial data. For points
down range, values of {Fug-u are determined as indicated above.

Several comments concerning the model bear repeating. First, it
is a mathematically derived result with its basis in a parabolic wave
theory. Examples presented in References [3, “demonstrate the incorpo-

_ ration of both diffraction effects, as measured by beam spreading, and
interference effects. Secondly, the model is equally applied to determi—
nistic and to stochastic experiments; the only difference being one of
interpretation. Since We have so far excluded a stochastic volume scatter,
the source of any randomness must arise from the nature of the acoustic.
source or possibly the prior interaction with a rough boundary surface.
Finally, the model is well suited to numerical implementation [5].

RANDOM VOLUME SC‘J\'I'I'ER

 

Random volume scatter is incorporated in the propagation model by
the addition of scattering terms that describe the rate at which acoustic
energy, measured by Nine) values, is scattered from each ray path and
is then redistributed among t e remaining ray paths. We write the follow—
ing equation [8]

: -_ [they 3 like)?
{:4

Joe ’ lo'WL ‘u I

flfle—e‘fl I W. WE]
(l)

The derivative with respect to .05, is to be interpreted as a substantive
derivative taken with respect to distance over a curved (in general) ray
path. The function J—[Hg ‘55)] is the Fourier transform of the correla—
tion function defined'on the randomly varying refractive index, and 01:2,)
is the integral of 271.1309, erg: )j taken over £3 . The integral in Eq.
(1) is taken over all directions, '9' . The first term on the right-hand
side gives the rate at which energy is Scattered from the 9 ray path;
the second term gives me rate at which energy is Scattered" to the g ray
path, i.e., from the remaining ray paths. We note that Eq. TD predicts
an energy conservant scattering.

 

One can properly interpret the redistribution of the powar scat-
tered from one ray path to the remaining ray paths as a spatial filtering,
and the filter function as a locally scattered beam pattern. Thus,
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éLtCQ eta: gives the distribution, in , of scattered acoustic in—tensity for a plane wave incident in the direction of g’ . Since it canbe obtained from a single scatter calculation, this interpretation reducesthe detemdnation of '3‘ E 501 -b;_,’ )1 to a classmal problem(cf. [7]). Theresults-that 77’ is related to the spatial correlation of the randomly vary—ing refractive index ,field' as a Fourier transform pair. is well known.The Simplicity of the derivation of_ Eq. (1) as outlined is interesting inthat it has been largely overlooked. The reason for this apparently isthat most calculations of the two point statistics of the stochastic fieldare formulated in terms of the signal coherence function, which is aFourier transform of {Eu-“eifl‘

A scattering model that has been derived by a large number of re—searchers (the earliest apparently by Beran [83 and Tatarskii [9]) can besham to be special cases of E . (1). For an isotropic scattering mechan—ism one need only assume that the differences between £3, £31 directions aresmall enough to replace the sine of the angle by the angle itself and themodels are the Same. (In the earliest versions'referenced the models didnot allow for an inhomogeneous background medium, but the required exten-sion was easily accomplished [10].) Application of the Beran—Tatarskiimodel to an anisotropic scattering medium (the Ocean) requires an addi—tional approximation, one that restricts the degree of anisotropy; Thecalculations will be given in the verbal re .

With the quasi—isotropic Beran—Tatarskii model suitable for oneclass of ocean acoustic experiments, a second class is more properly de—scribed by a highly anisotropic model presented by the present author and'Beran [L1, 12]. This second model is also contained in Eq. (1), and isobtained by making a set of additional approximations that are differentfrom those that lead to the Beran—Tatarskii model. We note that whilethe quasi-isotropic and highly~anisotropic approximations lead to modelsthat can be applied analytically in special cases, they do not simplifythe numerical computations required to analyze a realistic experiment

Eq. (1) with no assumption as to the degree of anisotropy of the scattaingmechanism.
.

RANDOM BOUNMRY INTERACTION

We can discuss [13] randomly rough boundary interaction models thatare compatible with the propagation and volume Scatter models. Compati-bility refers to formulating the boundary interaction model in terms ofU153,” . A phenomenological model in the form of a linear filter modelmight be written

{.63} = fflee’ ;5) {Flash} 461: . (2)
where )‘(9.9,l;£)is to be determined from experimental data, It gives thedistribution, in Q , of the reflected aoousticintensi‘ty for a plane waveincident in the direction of Q" . To "derive" Eq. (2) requires two assump-tions, a statistical independence assumption between the variations of therough boundary and those of the incoming signal, and an assumption thatthe boundary interaction is local.
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To obtain analytically an expression for 474{ .6}, .‘5 ,' {lwhich we

might apply to a widerangeof experiments, is very diffimlt. For '
slightly rough surfaces We can make use of perturbation theory to derive ione expression; for high—frequency experiments we can make use of Kirch-
hoff Scattering theory to derive another. While the necent literature
contains several-references reporting on theoretical studies to relax
either of these restrictions, the prospects for incorporating this work
in prediction models for realistic sea testswould not appear to be too
bright. -
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