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1. Introduction

Sounde generated In a room are distorted by reflections from boundaries, and if
the room response is modelled by an jmpulee response functicn then the perceived
(measured) signal is the convolution of the pource signal and the room impulee
response corresponding to the particular source/receiver positions. In some
instances it may te desirable to remove the affects of the room from recorded
date, and it is with this ultimate objective in mind that the problems of
choosing eppropriate wadels for room response are discussad.

The complex cepstrum ig one approach to deconvolution and in addicion offers an
interesting interpretation of room characteristics. This paper will:

(8) Briefly review cepstral mathods .

(b) Outiine the basis of the usa of cepstral analysis in the treatment of room °
response including the problem of eignal recovery.

(c) Present some results releting to a real reom.

2. Cepstiral methods - a brief review

The figure below Indicates the steps in forming the éomplex cepgtrum of a resl
valued signal x (asgumed to be the convolution of two other signale ¥ and s).
The signals involved ere discrete in time snd Z denotes the z-transform.

x(@)=c (a)* 8(a) | X(2) X2) [T 20 = i) +am)

2 » 1In

The important feature is that the cepstrum of two convolved signals is the sum
of their cepatra {if the complex logerithm is defined approptiately). The
ploneering paper |1| dealing with powar cepstra etill remaina an illuminating
aud informative source, though the usual description now uses the z-tramsform
[2]. Computation is achieved using the discrete Pourier tramsform. Having
wmapped from convolution to addition, the aignal X ‘(resl valued) may be processad
to recover one of the components (say s} by filtering followed by the
appropriate inverse operations. To obtain @ real valued cepstrum %, its trans-
form'g must have the usual properties of the Fourier transform of a real signal.
This, in turn, implies that the phase of X {(note: R=tnX=tn|X|+jargk) ehould be
continucus and odd. This romoves any ambiguity in the definition of the complex
logaritho; indeed, it is the problem of ensuring that the phese satisfies these
conditions that has lead to the development of 'phase unvrapping’ algorithme |3].
Thia constitutes the main cemputational difficulty io cepetral analysis, though
eidestepping the problem by factorising the transform has been suggested |4].

* Fipancial support from J.S5.R.U, Cheltapham is gratefully acknowledged.
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Applications of the cepgtrum include selsmology [3|, speech proceseing |5|,
loudepeaker agsessment |6|, room response |[7| and the determination of acoustic
impedance |8].

3. Room impulse response and the cepatrum
3.1 Baeic prineiples

We emphasise that we are not concerned with estimating impulse response

functionas of roome from genéral recorded data. Rather, sigmnals representing

room impulea reeponse (either synthetic or experimentally measured) are teken

as the starting point, The principles underiying the study are given in |10]
" and |2| an¢ are summariged here.

Let h(n) denote an impulse response function with transform H(z) having mixed
phase. H(z) can be written (a) H(z)=Huin(z)Hmax(e) or (b) H(z)=Heq(z)Hap{z).
In the first case Hmin{z) denotes that part of H vhose poles and zeros lie
vithin |e|=1, and Hmax(z) denotes that part with zeros outside |z|=l. Hmin is
minimum phase and Hmax ig maximum phase. In tha second case H ie rewritten as
the product of an all pass filter Hap(z) and Heq(z),vhich ie snother miniomm
phase function that has the same spactral magnitude as H(z).

From (a) the time domain equivalent { h(a)-hmin(n)*hmax(nlaso that its
cepatrum h(n)=hmia(n)+ x(n), where hoin(n)=0 for n<0 and ‘tmax(n)=0 for n>Q.By
only retaining the cepstrum for poeitive/negative values of n the minimum/
maximum phase componente are retained. The minimum phase component has a
caugal inverse and the maximm phase component an scausal inverse.

From (b), the time domain equivalent ia h(n)=heq(n)*hap{n) so that the cepstrum
is h(n)=heg(n)+hap(n). The cepatrum of an al]l pass sequence has anti-gymmetric
positive and negative time components and eo ‘heq(n) can be obtained from
eq(n) = p n<Q

= Th(o) . n=0

= hi{n)+h{-n) n>0 ’
The sequence heq(n} is minimum phase with tha seme epectral magnitude as h(n)
and han a causal {nverse. The all pass filter has an inverse with an acaueal
component. In the following sectiona we phall discuss the spplication of both
(s} and (b} to room impulse responses, noting that Neely and Allen |7]| address
the problem of invertibility of room impulse rasponse based on the .
interpretation (b) above to deraverberate data processed through synthetic |9|
Toom responses, Thelr work demonstrates the feasibility of removing Heq(z).

3.2 Data scquisition and computation methods

The impulge responses studied wera either synthesieed or pre-recorded. The
discugaion below relates to a response obtaiped by impulsive excitation
{sampled at 10 ¥Hz). Programs for computation of power and complex cepatra,
group delay etc were daveloped on the ISVR PDP 11-50 computer. Curremtly the
largest complex cepstrum calculation is limited to 1024 pointe. This requires
the use of exponential weighting on eome respenses, usually corresponding teo
larger rooms.

3.3 Separation of minimum and maximm phase components

Moat room impulge responees are mixed-phase signals |7[ 8o room response h{n)
is the convelution of hmin(n} and hmax(n). hmin{n) can be consfdered sy the
portion of room reflection energy that dies away in 2 ghort time after
excitation; whereas hmax(n) can be interpreted as the portion of room response
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energy that arrives at later inatances.

Pigs 1 and 2 ghow the impulee and frequency responses of an. absorbent emall
room (Including exponential weighting). The complex cepetrum is showm in fig 3.
Fig 4 ghows the (negative of) group delay of the response, (positive spikes
denotes reros juast inside the unit circle), Group delay indicates the relativa
delay introduced by the room on the various components of the gignal's spectrum

|11}.
. " g "
. I 3
L -1 4. 1)
3 3 [
g z E L \ T\]f - N 3 ’
3 o [hib §..{_‘ ¥ ] %,
i [ :. EI‘ jvl hid :
% it v \“b[ 1.
. ]
Bl S Pt T Tt i S bk O3 W L -3 L E]
Liae Cancondy)a -3 frosunnce {na) +EL Line Cytcands)s E-2
Fig 1 "~ FHg2 Pig 3
Iy - '
: i ,
+ ': 4:
E ';. - E 5
5. & i 3
2 2 A
3 g :
i-n g
- < " -y . —_
! " trevencvian o £1 ! "hn‘('uu:n.ll)né.—! b "\:n":uto::ﬂ L E—! ¥
Fig & Fig § Fig 6
[ [ g ’ - . 1
T ~
. f] L} i - Loty
§ "/ \ E i { Vv —\\x E
. e g
2L 1 E (N z
FRS r’ W\ i 2 \ r\\.; L
s - s« M 3
--I|= o -r .....[J'VJL\J.. X | o . .
B L P d . =gt _J — - -
' .tn---:r.e-r {';n».z'z * ‘ “l‘rn::nu :;ﬂ- ;': * """“’:lﬂﬂl‘h.l'l - E.! y
Fig 7 Fig 8 Fig 9

The Toom response was then separated into minimum and maxivum-phase parte (Eigs
5,6) whoge frequency regponses are showm In fige 7,8. The frequency plots
indicate that the trangmission characteristies of the particular room were
dominated by the minimm-phase response, except for s minimm near 800 Hz. The
group deleys of each component reinforca thie conelusion. . FPig 9 shows the
(negative of) group delay of the minimum phase part.,
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3.4 Separation into equivalent minimum phase and all pass componente

We now consider the second form i.e. hin)sheg¢(n}*hap(n). The room response
(fig 1 ) vas separated into "equivalent" minimum-phase and all-pass componemts
(figse 10, 1%. The heq{n) component has a frequency responea magnitude.
identical to the original room respomsa (fig 2). The adventage of this type of
peparation in dereverberation work is that the resulting response heq(n} can be
directly inverted and.the effect of all pass component should not affect the
signal's amplitude spectrum. Howaver, subjective mssessment indicates that the
remaining phase distortion may still be perceived {7].
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Finally, the energy decay rates of the original response, heq(n) and hap(m)
were derived in the form of raverberation curves, ueing the ‘integrated .
fmpulge' tachnique |12|. Thesa curves (£ig12) confirm that the reverberation
time corresponding to the "equivalent” minimwm-phuea response is ehorter than
the original room reverberation, smd in addition hae very high initial -decay
rate, whereas the reverberation time corresponding to the all-pass respense
component ig longer. '
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