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INTRODUCTION

The measurement of plene wave acoustic fields in flow ducts require a signatl
analysis tectmique that represents the signal by 2 sum of sine wave compoments
with high precision., The most widely used technique is the Fourier Transform in
its various forms. For discrete component digital signals the Discrete Fourier
Series camn be written as

M-1 . _
£(ka) = che““"’fo‘i‘; ko0, 0,01 (1)
i=o

vhere fo=1/T and T is the period of the signal, s ie the digitisation perlod, M
is the number of samples of the signal, ii.~ application of Fourier analysis to
problems where the wave components are not in strict hermonic sequence will
generate erroneous results. For example, the analysis of the quasi-periodic
eignals found in combustion engine exhaust pipes,

Alternatively, a method based on the Prony Series defined by
m-1 :
£ka) = Jc.e®i*; x=0,1,....,81 e))
j=o 1

where 8i=cj+i2vfs, can be used with advantage in scme cases for signal component
identificaiion. N is the number of components of the resl function f, while aj
and fj are respectively the damping factor and the frequency of the jth component.

THE METHODS

The Pourier representation is designed for signals with a broadband spectrum or
of repetitive nature. The Four.ar Series (1) fits a set of harmonically

related components to the signal “(ka). The period of the signal has to be
accurately defined as it determines the 'fundamental' frequency £, In practice,
if the M semples comprise n periods :

Eo = n/MA. (3

This relation shows the synchronisation of the sampling frequency fs=1/A with
fo. The frequencies fg are normally preset in the analogue-to-digital
converter. Consequently, if the drivirg frequencies are not adjusted to fs for
a correct detection, a high sampling rate fs and a large number of semples have
to be used for a best estimation. Relation (3) also defines the frequency
resolution. Again, a fine discrimination cen only be guaranteed by high values
of fs end M. The FFT normally requires M to be a high power of two,

The Prony Series is an ideal representation of discrete component signals [1].
Comparing the Prony Series (2} to the Fourier Series (1), one con see that the
exponents for the Prony Series are complex and need not be harmonically related,
Ro synchronisation of sampling and acoustic frequencles is necessary, while a
minigum of 4N samples is vequired. This mesns that very short data lengths
can ba analysed using the Prony method.
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THE PRONY SERIES ALGORITHH

The representation of a signal by a serjes of complex exponentials was
introduced by Prony as early as 1795 [2]. _The gpplication to digital signale
has only been investigated in the 1960's [3]. [s]. Por the evaluation of the
exponents 8j in the non-linear eet of equations (2), Prony introduced a new
varisble u; as the coefficlents of a 2Nth order polynomial in x whose roots

xj=exp (s jo A matrix and a polynomial equation have to be solved sequentially.
(i) Solve: -1 ‘

] f((kpinq)d)a, = E((Dpenq)a) (%)

k=0 k o

n=0,1,...0,H1
p,q integers

to determine the coefficients uk; p tepresents the separation among the samples
taken for coefficiente of each dquation, q 1s the separation among the first
samples of the sequential equations.

{ii) With a.,~1, find the roots of

20 k ’

[ ax - 0. (5)
k=0

The 83 can be calculated from the asclutions Xj

N

1
- | .
Y “(xj)
Pinally, the evaluation of the complex amplitudes Aj ie a fitting problem:

(iii) 2H-1 K
j[ ijj - E(kA); k = 0,1,....,M1 {6)
=0

The introduction of the parameters p and q is to obviate the fact that the
matrix equation {4) becomes Increasingly i11-conditioned as the digitisation
period decreases 3],[5]. The time interval spanned by each one of equations
(4) is NpA, This should be as long as pessible. This calls for either a
large number N of analysis components or a low sampling rate 1/4. The

- resulting effective sampling rate is

feeff = 1/ph.

The increase on p is 1imited in the analysie of noisy signals by the 'aliasing’
of the nolse high Erequencies. ‘The effect of ¢ is to extend the total number
of nauples covered by the matrix equation (4), for the same memory allocation.

The Prony program, using least squares for the solution of (4) and (6) when tha
oumber of samples M>2N(p+q), was found to be slower thon a standard FFT Frogrem.
Its speed was comparable with a Discrete Fourier Series Program (DFS),

provided N wae less than 9.

APPLICATIONS OF THE METHODS

The wethods were applied both to signals extracted from an experimental rig and
to slgnals generated in the computer (PDP 11/50).

The estimation of the damping factore oj has not presently been exploited.  But
it wea observed that the algorithm picked up any variation in the envelope noise
ete,

For nolse Eree signals the three Programs (FFT, DFS and Prony) compared well,
when the synchronisation condition (3) was satisfled. For signals with multiple
non-harmonic discrete components, the Prony algorithm was invariably superier,
The following table shows the results of the analysins of a signal composed of
three pairs of undemped components by the Prony Program. :
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SICRAL ¢ Taliz) | Anal. ()] A 9{rad)

Ne8B 55.97¢9 9.510 §.712
. Bk M = 200 501,395 6.595 4.712
sum of p=q=1 700,389 6.502 4.712

54.969% 4.943 4,775

55.0 Hz,Amp-5.0 N =12 57.002 4.578 4,644
57.0 Hz,Amp-4.5 8k M= 300 500.010 2.013 4,698
500.0 He,Amp~2.0 p=2 502,001 4,487 4.719
. : qe2 700.011 2,313 4.753
502.0 He,Amp-4.5 ) 701,054 4.178 4,640
‘ 55,008 5.044 4,713

700.0 He,Amp-2.5 Ne=28 57.012 3.956 4.712
701.0 Hez,Amp-4,0 4k Ma272 500,005 2.010 4,714
pol 502.002 4.490 4,712

q=1 699.987 2.431 4.716

700.991 4,069 4.710

The table shows that by changing the parameters of analysis the components can
eventually be correctly diacriminated. When this does not occur, as in the
first estimete, the energy of the two components £1 and f3 = f)+Af was
concentrated in the frequency in between f1+Af/2, = Note that a lower sampling
rate fg luproves the resclution.

When the signals were affected by smbient noise, {t was in general observed that
the nature of the nofse influences the results more than the 8/W ratio. The
vworgt cases corresponded to broadbend noise. The algorithm picked up noise
components ell over the bandwidth, impoverishing the resolutiom. The next
table shows the analyeie by the Prony Program of a elgnal embedded in broadband
background noise in three different ways.

SIGHAL : Anal, L(hz} Anp__| Blrad)

"N = 15 430,001 | 10.C01 | &.712

{1) Pure signal {§/Nc=) M = 300 499.999 | 12,499 | 4.713

p=q=1 699.999 114,999 { 4.712

(2) Signal (1) plus Nel4,p=1 497.786 1 27,075 | &,290

broadband noise(S/N=23dB) | M=296,g=1 | 699.970 |14.975 | 4.724

{3) Signal (1) plua the. N =14 490.480 | 11.066 | 4.799
broadband noise filtered M= 296 500.355 | 11.516 | 4.630 B

in the 400-600 Hr band prq~l 700.008 | 15.998 | 4.712

[(}) Signal {3) but noise N =13 490,289 [12.782° 1 5.296

level inereased to H = 292 501.090 | 13.846 | 4.170

equal 8/N=23dB of (1) p=2,q9~1 699.998 | 15.007 | 4.713
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The table shows that the lower the 5/N ratio, the coarser the resolution. But,
for the same 5/N ratio the components can be separated when the noise is
parrowband. The Fourier estimates were less affacted by the presence of noiee
than the Prony ones. This is explained by the mich larger lengths of data input
to the Pourier techniques. Several strategles were followed tc reduce the
effects of noise on the estimations. The averaping technlque was seen to
perform equally well with Fourier and Prony techniques. But, it requires the
knowledge of the perlod T of the signal, i.e. the synchronisation atated in (3).
Piltering techniques were also successfully evployed. The characteristics of
the filter hed to be made as steep ae possible, for maximum efficiency.

CONCLUSIORS

The Prony anslysis produced correct eatimarions when compared to the ones
obtained by Fourier methods. For signals eabedded in broadband ambient noine
the Prony method required for some cases a further proceseing, either by
chenging the parameters or by using a multiple procedure (averaging or filtering
prior to the enalysis). When Fourier methods cannot be employed, ae for
signals with a set of non-harmonic components or very phort data lengths, the
Prony algorithm can provide good estimations.

The use of the Prony analysis brings & great economy both in data lemgth end
in emperimentation time. The latter {s due to the relaxation of the
requirement for the synchronisation of the driving and sampling frequencies.
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