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ABSTRACT

The spectral matrix rank of the N dimensional signal received on an array of sen-
sors is equal to the number of sources. The spectral matrix rank can be obtained
through the number of non zero eigenvalues. The sources can be separate using the
spectral matrix eigenvectors. The above properties have been used in order to de-
termine the number of sources and to identify the sources in submarine acoustics
and geophysical applications. In actual situations a lot of problems arises :

- Definition of the "best" estimator of the spectral matrix.

- Position of the threshold in order to separate the eigenvalues related to

the source from the eigenvalue issuing from the noise.
- Synthesis of the filters separating the sources.

We present the results obtained on submarine acoustic and geophysical signals and
we discuss the effects of the estimation on the eigenvalues and the rank of the
spectral matrix : o
- Relation between the rank of the spectral matrix and the number of degree
of freedom of the averaging procedure.
- Modification of the eigenvalues amplitude by the estimation procedure.

We conclude by a presentation of some experimental results of sources separation
in actual situations.

-0 -
INTRODUCTION

The devices possibilities development has led to very sophisticated processors
in N dimensional signal processing. The treatments actually developped use es—
sentially the concepts of linear subspaces theory as theoretical support and the
spectral matrix estimator as experimental tool. We will show some applications
of these techniques in sources number determination, sources identification and
spatial filtering.

1 - THE SPECTRAL MATRIX : DEFINITION AND PROPERTIES

The spectral matrix is used for studying the N components signals :
( S1(t)

§_(t) - ;- v
\\SN(t)
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These signals are found in a large number of practical problems. A N -component
signal can be obtained as the output of an array of N sensors. This situation
arises in submarine acoustics (SONAR) electromagnetic ranging (RADAR) remote -
sensing (earth observation) sismology (vibroacoustic sounding). In some cases
the N components are of different physical nature (magnetic component and
pressure of the swell are considered in'[1]). The N component can also represent
the components of a vectorial field [2]. In all these situations with the hypo-
thesis of a random null average N components signal the energetic and correla-
tion properties of the signal are given by the correlation matrix

E‘L\k(tl'tz) =5 ):Si(tl’ Sk(tzﬂ (1)

E : expectation

Generally the signal components are statiénary in time and the correlation matrix
depends only of the time lag : T=1t; ~ t, ‘

Then the Fourier Transform (FT) of the correlation matrix gives the spectral
matrix § (V) by : -

e g ' ‘ V hat! ’ - .'—‘(y - .
¥opl) = FT[lﬂik("C)] = ji,l,k(-;) ey 2.

The spectral matrix is interesting when the physical model is linear. The linear
hypothesis is generally done (eventually as a first approximation) and.the N
components signal has then a multivariate linear model. In this model the N com-
ponents are issued of p random independant excitations called sources transformed
by a p input, N output (the signal components) linear filter. The uncertainties
arising in all physical system are taken into account by an additive N components
noise. This model is particularly well suited to all the propagation situations
(submarine acoustics for example) in which one can identify the "physical sources"
and can modelize the linear filter using the laws of propagation.

With this model the correlation matrix is :
‘ , p 7 . v |
| E(C) = lZ _{_:i(z) + :_[;(?:) ] o (3)

where : n( {) is the contribution of the source i and _‘_B('Z) the noise correlation
matrix. ~'The spectral matrix is then : R

I = ) T o+ B - @

If Hi(Y) is the transfer function (column matrix of N components) from the source
@e 1 to the N components signal 3

~

=1

o |
¥y = P, g-i(ﬂ). H (V) .,(5)

Pi : power of the source i, ~/: transpose complex conjtigated

The matrix Ei(\)) will be called the source-vector representation in the physical
base (base of the sensors)[91. :
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With this modelization the spectral matrix alows us [31,14} :

- to determine the number of sources,
- to identify the source-vectors.

The relations (4) and (5) show that in the noise free case (XB = 0) the number
of sources is equal to the rank of spectral matrix. So the spectral matrix rank
gives the number of sources when the number of components (N) is greater than the
number of sources (p). The spectral matrix rank is given by the number of non zero
eigenvalues of the spectral matrix. The calculation of the eigenvalues is time
consuming (for large values of N) in order to save computation time other criteria
have been proposed [5]. The same method can be applied when the noise is white.
In this situation the eigenvalues can be classified in two families :

- a family of minimal equal eigenvalues (associated to the noisé) '
- a family of non minimal eigenvalues (associated to the sources).

The source vector identification uses the spectral matrix eigenvectors associated
to the sources eigenvalues. The linear subset spanned by the p source-vectors and
the linear subset spanned by the p source eigenvectors are jdentical. This leads
to two conclusions : ’

- When one source is present it can be identify without indetermination.

- When there is more than one source it remains indeterminations. In this case,
it is necessary to introduce "supplementary informations" in order to do the
sources identifications [3]. Some general procedures have been proposed. In
linear array processing with equispaced sensors the PRONY-PISARENKC method
identifies uniguely point sources [61.,171. :

Finally when the sources are jdentified each source is represented by a vector
function of frequency in the linear N dimensional signal space. It is then possi-
ble to separate the signals emitted by each source by an appropriate linear
transformation (projection).

The source number determination and the source separation by filtering will be

jllustrated below. It is first necessary to present the estimation method of the
spectral matrix.

2 - SPECTRAL MATRIX ESTIMATORS

We observe the N components signals on a duration T and we want to estimate the
spectral matrix using this observation.

The classical FOURIER estimator uses the averaged periodogram Or " correlogram
methods [8). The two procedures are caragtherized by the bias and the variance
of the estimator. In cross—-spectral estimation, in order to reduce the bias, it
was shown in [10] that the lag-window must compensate the mean time lag between
the signals. The variance is inversely proportional at the number of degrees of
freedom :
F = T'i n'Bm
where : Ty characterize the time duration of the observed signal (integration
time) and Bm the bandwith of the analysis (equivalent bandwith).
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3 - SOURCE NUMBER DETERMINATION

The principle of the method was stated in (1) : the source number is equal to the
number of non minimal eigenvalues. Practically the situation is not so simple. It
_ has been shown in [10] that the rank of the estimated spectral matrix is always
cmaller than the number of degree od freedom (F) of the estimation. So, in order
to estimate p sources it is necessary to have :

p{F

Iet us suppose now that the source number (p) the number of degree of freedom (F)
and the number of signal components (N) verify :

a) p{F{N
b) pd{N{F

and that there is an additive noise. It can be shown [10] that, in this situation,
the noise associated eigenvalues are not constant as in the theoretical case. In
the case a) F-p "noise eigenvalues" are decreasing and the others are nulil. In
the case b) the noise eigenvalues decrease continously.

In order to illustrate this method we present two applications. In the first
application we try to detect the number of sources of natural electromagnetic
pulsations. This phenomena is in the frequency band (0,5 - 2 Hz) and its origin
is a wave particle interaction in the magnetosphere. The signal components are
the meridional (H) and latitudinal (D) components of the magnetic field pulsations
recorded on three ground stations : So (Sogra in North of Russia), Sv (Sandvall
in the Middle of Sweden), Ie (Lerwick in the Shetland Iles). The distribution
of energy in the time frequency plane for each station is presented in fig. 1.
The spectral matrix is calculated in the time interval T4 (the duration is 690 s
giving a total time-bandwith product of the order of 170) with a number of de-
grees of freedom F = 20. The. plot of spectral matrix eigenvalues versus frequency
(fig. 2) shows two frequency bands. In the lower frequency band two eigenvalues
are significative and we can suppose that in this frequency band theré are two
sources. In the upper frequency band there is only one significative eigenvalue
so in this freguency band we can suppose that there is only one source.

The second application, is in submarine acoustic. In this experiment a 5 component
signal was registered on a linear array of 5 equidistant hydrophones. 'The two
sources were two emiters feeded with large band (3 to 7 kHz) independant white
noises and their positions were known. The spectral matrix estimation was made
with a number of degrees of freedom F = 50. We can see on fig. 4 that a clear
separation between the two first eigenvalues and the following ones can be esta-
plished for an angular source separations greater than 1° (the Rayleigh resolu-
tion power of the antenna is of 5°). It is clear, on these results, that the
"white noise" eigenvalues are decreasing. SR '
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4 - SOURCE POSITION DETERMINATION

In the submarine acoustic application we have made a source position determina-
tion using the PRONY-PISARENKO method. With a linear array of sensor the source
vector of a point source is :
v = (Zl L
= (s .
- N - orra sin
=) f= 2MEEEE

a : sensors separation, X: wavelength, B: source azimuth

Going back to thelinear subgeet interpretation we can say that the vectors sour-
ces are orthogonal to the noise associated eigenvectors. The scalar product of
the noise eigenvector with v leads to an algebric equation whose rcots give the
azimiths of the sources. The results obtained in successive experiments are shown
fig. 5. The sources are separated for £ > 1° but it remains a bias and a disper—
sion in the direction measurement.

5 -« SEPARATION OF THE SIGNALS EMITTED BY EACH SOURCE BY FILTERING

The principle of the method is the following. If Zi(‘)) is the i source vector at
the frequency ¥ the source i excitation is given by the scalar product :

e, = {v;(M | s>

The product of this excitation with the source vector gives the i source frequen—
cial component at each sensor and the time components are obtained by inverse .
Fourier Transform. This method leads to a rejection (not complete) of the other
sources and to an enhancement of the signal to noise ratio because all the noise
contained in the subspace orthogonal to the vector source is eliminated. The re-
sults of this method are shown fig. 3 on the natural magnetic signals presented
in 2. The filtered signal exhibits an amplitude modulation characteristic of the
geophysical phenomena. This amplitude modulation is not appearant before filte—
ring because the signal components are corrupted by additive noise.

6 — CONCLUSION

The spectral matrix is a very useful and important tool in N components signal
processing. We have shown in real situations that, from the spectral matrix esti-
mate it is possible to : : ‘ :

- detect the number of sources
-~ identify the sources
- separate the signals emitted by each source

This kind of treatxﬁents are being developed but a lot of problems stay unsolved.

New results can also issue from the development of new spectral matrix estimators
using parametric methods like the autoregressive (AR) one.
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v(iiz)

v(lz) v{Hz)
02 g4
- 1 source 0° » : * : 2 sources 0°
o
' ' s | : 1
i
m& i fiL
b i A
: | [
P [ ]
ERN .: nr,
L] | I +
e,
| I
{D.f | Pl »
| | "
I . - | I
. I L 8
% -5 £33 0 -0 -5 i k) 6(degré)
v(Hz) v(tz)
M Ty T T 0 2l
blae[l 2 sources 0° lw +f 2 sourcaes 0°
| ! 20 [ i Bo
(B! | = 1l
I ( I Ji
11 ol | wlt
»l | o H
| i | it
L T ” (M
| ol {. m-lL
| I
®| 4 Ml r
| 1
U] Wl {1 b
s | I+ Y le
i
b - i
I
% 5 : w8 % % 3 0 8 (degré)
FIGURE 5

SOURCE AZIMUTH (

23.7

- THEORETICAL. * + MEASURED) IN SUCCESSIVE EXPERIMENTS



- Proceedings of the Institute of Acoustics ‘Spectral Analysis and its Usein
Underwater Acoustics’: Underwater Acoustics Group Conference, Imperial
College, London, 29-30 April 1982 ’ ' S

_REFERENCES

(1] J.L. LACOUME - F. GLANGEAUD - P. LORENZINO - D. BAUDOIS - G. PRETET
Filtrage de signaux multicomposantes utilisant les corrélations intercompo-
santes.

Colloque GRETSI, Nice, Juin 1981, pp. 319 & 324.

[2] LRO STOREY ~--F. LEFEUVRE
Analysis of a wave field in a magnetoplasma. The direct problem.
Geophys. J.R. Astr. Soc. 56, p- 255, 1979.

[3] H. MERMOZ
Imagerie corrélation et modéles.
Annales des Télécommunications, T. 31, n° 1-2, 1976.

[4] J.L. LACOUME - B. BOUTHEMY - F. GLANGEAUD - C. LATOMBE -~ A. SILVENT
Caractérisation par analyse interspectrale du champ d'ondes regu Sur un
réseau de capteurs. Applications.

Colloque GRETSI, Nice, 1978, 80/1-80/7.

[5] J.C. SAMSON - J.V. OLSON
Data adaptive polarization filters for maltichannel geophysical data.
Geophysics, Vol. 46-10, Oct 1981, pp. 1423-1431.

[6] R. PRONY -
Essai experimental et analytique.
J. Ecole Polytechnique, (2) 24-74, 1795.

[7] V.F. PISARENKO
The retrieval of harmonics from a covariance function.
Geophys. J.R. Astr. Soc. 33, pp. 347-366, 1973.

[8] G.M. JENKINS - D.G. WATTS
Spectral analysis and its applications.
Holden day, N.Y., 1968.

[9] C. TURCAT (LATOMBE)
Problémes 1i8s 3 1'estimation d'une matrice interspectrale.
Colloque GRETSI, 1977. : :

(10] J.L. LACOUME - C. LATOMBE
Analyse interspectrale.
Colloque GRETSI, 1981, pp. 311 & 318.

[11] R.N. Mc DONOUGH
A note on eigenvector decomposition of correlation matrix.
J. Acoust. Soc. Am., 69 (1), July 19806, pp. 165-166.

[12] B. BOQUTHEMY :
Etude de deux méthodes de caractérisation d'un champ d‘ondes.
Thase de Docteur-Ingénieur, Institut National Polytechnique de Grenoble,
Nov. 1981. ' '

2.8



