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l . SUMMARY

The incremental multi—parameter (IMP) algorithm will be described. This algorithm is used to

analyse data from arrays of sensors in order to estimate signal parameters. It makes use of

the conventional beamformer as a key component of an iterative analysis of the data, yet is

able to outperform alternative "high resolution" estimators such as MUSIC by 10-15dB. The
algorithm is suitable for use with general array geometries, and is also capable of handling

single snapshot data and coherent signals. This paper outlines the algorithm and compares the

performance of IMP, MUSIC and RootMUSlC, as assessed by Monte Carlo trials.

2. INTRODUCTION

Conventional processing (beam scanning, or beamforming) of received data from sensor arrays

may be looked upon as a form of "spectral" analysis. If the array is linear, with M2
interelement spacing, then the conventional estimate for the far field distribution of received
power is a padded Fourier transform of the data. Major peaks in the spectrum are assigned

to localised signals, the spectral frequency corresponding to direction of arrival. The spectral

peaks (or lobes) are broad, and a large antenna aperture is required to "resolve" signals

which are close to each other.

This view of array processing as an analogue of spectral estimation has been largely

responsible for the current emphasis on high resolution algorithms such as MLM [1,2] and
more recently MUSIC [3,2]. These techniques result in "spectra" with much narrower, sharper

peaks. Thus signals may be resolved with much smaller antenna apertures than for

conventional analysis. In addition, "sidelobe" levels may be suppressed, apparently without the

need for effectively arbitrary aperture weighting functions, such as Hamming or Chebychev
[4]. As in the conventional case, spectral peak locations are used as indications of signal

angles of arrival.

However, the resolution enhancements realised by many algorithms such as MUSIC, are

brought about by throwing away information in order to "improve" the resulting spectrum. In

fact, the principal practical distinction between algorithms of this class lies in the effectively

arbitrary weighting functions used to emphasise or discard components of the data [5]. The

conventional beamformer, on the other hand, does not discard information.

It should be remembered that the aim here is to extract details of signal positions and

powers, and not to estimate a spatial spectrum. The spectrum is simply an aid to
interpretation of the data, and has no physical significance, unlike a transmit beam.

Recognition of this fact is leading increasingly to the study of approximate maximum

likelihood parameter extraction techniques. which are designed specifically to extract the

desired information. Examples include alternating projection [6], nonlinear regression [7], EM
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[8], and the recently developed iterative multi—parameter (IMP) algorithm [9]. IMP uses the
information preserving conventional beamformer as a basic processing component,

This paper describes the IMP algorithm (section 3) and presents results which illustrate its
performance (section 4). These results have shown that, under ideal conditions, its resolution
performance can exceed that of the popular MUSIC algorithm by the equivalent of a 10 to
15 dB increase in signal to noise ratio. Although similar performance sometimes may be
achieved by Root MUSIC [10], this algorithm is only applicable to data from regular linear
arrays. IMP may be applied to data from general non—linear arrays, and is more appropriate
to continuous update tracking problems. In addition IMP is inherently capable of resolving
coherent signals [11].

3. THE INCREMENTAL MULTI-PARAMETER (IMP) ALGORITHM

3.1. THE DATA MODEL
The usual data model employed [2] is as follows

4(1) = M [(1) + 3(1) (1)
where {(t) is a vector representing the input which is to be reconstructed, M is a linear
transformation matrix, Mt) is a vector sample of zero mean Gaussian white noise, and d(t) is
the resulting data vector, or "snapshot", at time t. We will assume for simplicity that the
matrix M (often referred to as the array manifold [3]) is known to within a negligible
calibration error [2]. For example, in the case of an array of n sensors expected to receive
signals from independent point sources, M will be an (an) matrix, whose N columns
(denoted mwi), i = 1 to N) represent the independent spatial transformations of calibration
signals from N possible discrete angles, 0,. Thus, M contains a representative subset of the
continuum of possible received waveforms: it provides calibration information about the array
manifold rather than details of specific signal sources. If [(t) represents the complex
amplitudes of the signals associated with m independent point sources, as measured at a given
instant, d_(t) will be given by the linear combination of m corresponding columns of M,
scaled by the signal amplitudes and perturbed by additive noise. From a reconstruction of
[(t), we hope to locate the m sources and estimate their powers.

3.2. CONVENTIONAL BEAMFORMING
The conventional (beamforming or beam scanning) method of solution is to use the
calibration matrix, M, to form a set of filters which are "matched" to each of the potential
signal directions, 9i, and to evaluate

Wm) = If'(0,,t)n’ = m“(a,) gm) £40) mm) I {erm mm,» , i = 1 to N. (2)
The superscript H denotes the complex conjugate (Hermitian) transpose, lay? denotes the
squared magnitude of the individual elements of the vector, 5, and mflwi) is a row of the
matrix M“. This is a simple estimate of the spatial power distribution of the input, [(t).
Such processing may be considered as "scanning" the data with the beamforming weight
vector, mfiwi). P(0,t) has the familiar broad multiple lobed pattern of classical analysis, with
consequent poor discrimination of multiple signals, resulting from the wide beamwidth and
high sidelobes.

If P data snapshots have been taken, and are represented by the matrix D, then the above
equation may be re-written and evaluated for the block of data (averaging over the P
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snapshots),

mi) = mfltoi) D D" mtoi) I {m“(0-.) cum - i = 1 to N- (3)
The location of the principal peak of this "spectrum" gives the optimal (maximum likelihood)
estimate of the angular location (spatial frequency) of a single point source of signal in an

additive isotropic noise background [12].

3.3. IMP
The conventional beam scan, described in section 3.2, essentially constitutes the first stage of
the IMP algorithm. Assuming that only a single signal is present, the beamformer will give
the best estimate of its position, fl, (dropping the 0 notation for clarity). Equation (3) may
be modified for the case of a known non-isotropic noise background [5,9].

Subsequent stages of the algorithm make use of the modified beam scan defined by

moi) = grim) O D DH 0 mm) / (mfiwi) Q mum} , i = t to N. (4)

Q is a projection matrix, which projects the data into the subspace orthogonal to that
spanned by the steering vectors which correspond to the latest estimates of signal angles of
arrival. Thus, in order to test for the presence of a second signal we use

o=1—m1m‘iltm’im.l. (s)
where I is an identity matrix. The normalisation term in the denominator of equation (4) is
central to the algorithm. However, application of equation (5) creates nulls in both the
numerator and the denominator of equation (4). The resulting instances of 0/0 must be
trapped, and in practice it seems sufficient to limit the denominator to 10-5. If the scan of
equation (4) produces no significant peaks as a function of 0, then the algorithm terminates.
If sufficient residual power exists in the modified beamformed output, the principal peak with
respect to 0 is taken as the initial estimate of the location of the second signal. Q2.

If the equivalent true steering vectors, r_n_1 and 32, are correlated, then the initial estimates

will be biased and need to be refined. This is done by repeatedly recomputing equation (4)
in the region of interest, forming Q from each of the latest estimates, fit, or $2, in turn.

Thus, the first iteration re—estimates fl" using a projection based on Q2, and so on until

the estimates become stable. We now have the best estimate of angles of arrival assuming
the presence of two signals.

To test for higher model orders (larger numbers of signals), the same procedure is followed.

At the ith stage, 0 takes the form

0 = I — Ms (M;I Ms)-1 M§ , (6)

where Ms is a matrix whose i—1 columns are estimated steering vectors. The entire algorithm

is summarised in Fig. 1. As further illustration. a typical sequence of beamscans is shown in

Fig. 2. 1MP is shown resolving three signals located at 0, 0.3 and 0.7 beamwidths from

broadside of a 16 element linear array. Fig. 3 shows the convergence history for this

particular experiment.

The decision to increment model order at each stage will depend on the definition of

"significance" in the test for peaks in the residual spectrum. Clearly, the spectrum will only
be completely flat when all degrees of freedom are used, and this is likely to be much
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greater than the number of signals present. In practice, some knowledge of the noise
statistics, as perceived through a limited number of samples, is required. This may be used
to specify a criterion for "flatness" in the residual spectrum. This test enables the algorithm
to determine the number of signals [9] without the need for tests such as the "minimum
description length" measure [15].

THE BASIC IMP ALGORITHM

N = 0 ! N is the estimated number of targets, initialised to 0.

Beamform ! Evaluate equation (4), with Q = I.

IF no significant peak THEN
Exit ! If P(6) has no significant peaks, assume no signals present and quiti

ELSE
Assign peak to Q,
N = 1

END IF
FOR i = 1 to Maxorder ! Maxorder is the maximum number of signals, usually

! 1 less than the number of sensor array elements.
FOR j = l to N_it ! N_it is the number of iterations at each stage.

FOR k = 1 to N
Calculate Ms ! M5 is the matrix [$1 1%].
Calculate Q ! Using equation (6),

Beamform ! try to find (N+1)'-h signal.
IF no significant peak THEN

Estimate signal powers
Exit

EISE
Assign peak to mm,

END IF
IF j < N_it THEN

FOR p = l to N

QPP=¢IW

! If none, then assume no
! more signals and exit.

NEXT
END IF

NEXT k
NEXT j
N = N + 1

NEXT i
Estimate signal powers
END

! See [2] or [13].

Fig. I. A summary of the IMP algorithm. The detailed implementation is semilive to the method employed for

estimation of peak positions, the number of iteration: at each stage, and the criterion used for termination of

the iteration.
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Convergence of IMF
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Fig. 3. Convergence of the IMP
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algorithm for the experiment of
Fig. 2 (16 snapshot: of data, with

3
three random phase signals at 0,
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broadside of a 16 element 05k

2
spaced linear array). The solid lines
indicate the estimated signal
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positions for each iteration of the
algorithm.
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4. MONTE CARLO RESULTS

4.1. INTRODUCTION
The performance data presented here are typical of results measured in a series of Monte
Carlo trials of IMP, MUSIC and Root MUSIC [H]. The data matrices, consisting of 16
snapshots, were generated from simulations of two signals in the far field with additive
background noise. A perfectly calibrated l6 element 0.5 wavelength spaced linear array was
assumed.

The procedure used for the collection and analysis of the Monte Carlo trial data is described
in [11]. Briefly, the statistics presented here are based on 100 trials of each algorithm at
each signal to noise ratio (in 3dB increments). The results presented are conditioned on
resolution. That is to say. bias and variance were only calculated if both signals were
detected. Resolution is said to occur if two signals are found at approximately the correct
(angle, power) coordinates. Acceptability is defined by margins AP and Al? on the known
coordinates. "Array signal to noise ratio" (ASNR) in Fig. 4 is a normalised measure equal to
((instantaneous signal to noise at each element of the array) + 10 log,u(n)).

Section 4.2 describes the results obtained. More comprehensive results for IMP, MUSIC, Root
MUSIC and a number of other popular algorithms are presented in [11] and [13].

4.2. EXPERIMENTAL RESULTS.
The target scenario consists of two equal power random phase sinusoidal signals in the far
field, the first located at the broadside position (perpendicular to the line of the array). and
the second at 0.1 beamwidths to one side. The beamwidth referred to here is the angle from
the peak of the main lobe of a matched filter (equation (2)) placed on the first target
location, to the position of the first null.
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Fig. 4 shows the variation of the performance statistics as a function of ASNR. The results.
taken at 3dB signal to noise ratio increments, are shown for IMP (heavy solid line), MUSIC
(dotted line) and Root MUSIC (broken line). The fine solid line in the plot of angular
standard deviation is the Cramér Rao bound [14] for the problem, assuming uncorrelated
emitters. A noise power threshold of lOlog‘o(n) has been used. together with A!) = 20.5
beamwidths and AP = :3dB.

As the ASNR rises, the probability of resolution increases (associated with a peak in the false
alarm rate), bias ofAthe angle and power estimates tend to zero. and the variance of the
angle estimates, var(ai), tend towards the Cramér Rao bound. The bias and variance results

are plotted for the "left—hand" signal, and thus negative angular bias indicates that the iii

corresponding to the estimated signals have moved further apart.

As can be seen in Fig. 4, the performance of IMF clearly exceeds that of either MUSIC or
Root MUSIC. A significant probability of resolution is achieved at ASNRs between
approximately 10 and 15 dB lower than required by MUSIC, and up to SdB below that
required by Root MUSIC. The estimation bias, variance and false alarm rates of IMP are all
either lower than or similar to those of the other algorithms.

Further experiments [11] have led us to believe that the greater performance of IMP stems
from the fact that the algorithm is sensitive to the effective spatial "narrowband" signal to
noise ratio. This corresponds to the "visibility" of the signal above the local background. and
is influenced by the level of additive noise in the local region. and also by the presence of
neighbouring strong signals. MUSIC. on the other hand, is rather more sensitive to the
spatial "wideband" average noise level, through its requirement to separate a "noise"—only

eigen-subspace,

s. coNCLUSIONs

We have reviewed the incremental multi—parameter (IMP) algorithm as an analysis tool for

data collected from sensor arrays. We have shown it to have both potentially higher
performance and more general applicability than the popular MUSIC algorithm. In particular,

we have demonstrated
0 resolution of two equal power signals, using a linear array, at signal to noise ratios 10
to is dB lower than required by MUSIC;
0 performance comparable to that of Root MUSIC for problems involving a perfect
linear array and partially uncorrelated signals;

In addition, some observations have been made regarding convergence of the algorithm.

Finally, we note that although, during the initial target acquisition stages, the computational

requirement of the version of IMP described here is frequently greater than for MUSIC, its
incremental and iterative structure makes it far more efficient for tracking and updating of
initial estimates. It is clearly possible to build model order decrementation into the algorithm

to allow for disappearing signals. It is also possible to conceive of running multiple versions
of the algorithm in parallel, each "tuned" to a different model order. It would then be very

simple to choose the appropriate output depending on estimated signal strengths for example.
Clarke (private communication) has recently developed significantly faster implementations of

the algorithm.
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