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Imaging systems in the near field, based on ultrasonic arrays, can readily be
achieved if a knowledge of the object plane is assumed. This prescribed
distance allows focusing based on computational or electronic processine to be

carried out. When no prior knowledge of the position of the object plane is
available the field intensity across a number of different planes can be

computed by back propagation of the recorded wavefront. A search can then be

made for a focused image on the basis of maximum rate of change of the image,

which is assumed to be associated with a well defined object [I].

A mathematical solution to the problem of self-focusing has been renorted

(Sepehr et al 1982 [2]) which enables reconstruction of the image of an object
to he obtained solely from a measurement of the phase and amplitude of the

wavefront in a plane at an unknown distance from the object. This mathematical

solution relies for its justification on the annlication of the Fresnel inteeral
and assumes uniform temporal phase in the object plane.

A second analysis of the system based on the relationshin between the spatial

frequency spectrums in the object and sampling planes has been developed. This.

justifies the original algorithm for the limited case of uniform temnoral nhase

in the object plane, and confirms the inherent nature of the n radians snatial

phase ambiguity introduced by the self-focusing algorithm.

SELF-FOCUSING IlmfiE VECOVSTEUCTIO“

For self-focused reconstruction an equation is required which enables the

object wave to be computed without knowledge of the distance between the object

and sampling planes. The pressure waves at the sampling and object planes,

p(x,y,z) and p(x,y,o), can be related using the Fresnel integral with the
obliquity factor omitted by:

m

p(x,y,z) = fi [I P(x,y,°) EEE.§JEEL dx dy (1)

—w

where r = #22 + (x - u)2 + (x - v)2 andk = 2;

The object wave p(x,y,o) is in general a comnlex quantity, but in order to
obtain a mathematical solution to the self-focused reconstruction problem it is

necessary for the object wave to be a real quantity. This implies a uniform
phase distribution across the object plane. with this limitation equation (1)
may be expanded into the real part p1 and imaginary Dart p2 as:

? cos (kvzz + (x - u)2 + (y — v)2 - % ) .

p1(x.y.z) = |'I(u,v,o) du dv (2)
A :2 s (x - u)2 + (y - v)2—m
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and m

P2(X.y.z) = Mun/.0)
-ao

where u and v represent the variables x, y, inthe object plane.

sin k/z2 + (x - u)2 + (y - V)2 '1
< 2 >du dv (3)

 

Azz+(x-u)2*(y-V)2

Both the equations may be recognised as two dimensional convolution integrals

and written as:

p1<x,y.z) = p<x.y.o) * cow) ' ' (A)
P2(X.y,z) = p(X.y.o) * s(x.y) (5)

where
cos (lo/22 + x2 + yz -

C(Xny) —_

“:2 + x2 +y2
and_

sin (kl/22 + x2 + y2 - )
s(x,y) = (7)

M22 4- x2 s y2

Equations (5) and (5) may now be transformed into the spatial frequency domain.

Thus if P1(fx,fy) and P2(fx,fy) representthe Fourier transform of 1:1 and pz,

(6)

N
I
:

 

and P°(fx,fy) represents the Fourier transform of the object wave, the

diffraction equations in the spatial frequency domain will he:

91(fx,§y) = Po(fx.fy) C(fx.fy) (3)

P2(fx.fy) = 'P°(fx,fy) s(£x.ry) (9)

where C(fx,fy) _and s(fx,fy) are the Fourier transforms of the cosine and sine

propagation terms. The sum of the squares of equation (8) and (9) gives:

2‘ z E 2 2 2
P1(fxufy) * P2(fx.fy) P°(fx.fy) [5(fx.fy) + C(fx.fy) ] (10)

It has been shown. Sepe‘nr [3], that at low spatial frequencies the Fourier sum

[5(fx,fy)2 + C(fx.fy)z] is unity. Thus P°(fx,fy) is given approximately‘ by

2 = 2 2
Pc(fx.fy) P1(fx.fy) + P2(fx.fy) . (11)

The object wave will then be given by:

i
p(x,y,o) = r1 [P1(fx,fy)2 s P2(fx,fy)z (12)

Equation (12) may be regarded as a mathematical solution to the self-focused

reconstruction problem within the given limitations. Thus the following

algorithm may be used for the self-focused reconstruction of ultrasonic images.

(3) Obtain the complex wavefront ps(u,v.z) at an arbitrary sampling plane.

(1?) Calculate the real part p1 and imaginary part p2 of the wavefront.
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(c) Perform Fourier transformations on p1 and p2 to obtain the Fourier
functions PMEny) and 132(20ny .

(d) Calculate the sum of the squares 0; P1(tx,fy) and F2(fx,fy) to obtain

the square object wave Pu(fx,fy) .

(e) Calculate the square root of this sum to obtain Po(fx,fy).

(15) Take the inverse Fourier transform of Po(fx,f ) to obtain the object
wave p(x,y,o). y

(g) Calculate the square of the modulus of p(x,y,o) to obtain the image.

It should be noted that step (e) introduces a phase ambiguity of W radians.

The method has been tested using a computer simulation and by experimental
measurement.

To simulate the reconstruction process on the computer, a simple object, letter
H, with an arm size of 8 mm was chosen (see Figure 1(a)). The diffraction
pattern was calculated using the Fresnel integral over a 6 x 6 cm2 observation
plane positioned at a distance of 10 cm in front of the object over 3600
complex data points. Figure 1(b) Shows the magnitude of the computed field.
In this calculation all points in the object plane were in phase and the
wavelength of 1-5 mm was assumed which corresponds to the wavelength of a
1 MHz wave frequency in water. The simulated data was then processed using the
discrete Fourier transform according to the self-focused reconstruction _
algorithm outlined above. The resulting computed image is shown in Figure 2.

The simulatiou has been extended to indicate the likely effect of non-uniform
phase distribution in the object plane. A good degree of tolerance has been
shown giving recognisable reconstruction providing that the extent of non-
uniform phase distribution does not exceed that with which the sign ambiguity
program can cope.

Figure 1(a) Figure 1(b)
Amplitude diitributian of object function. Computed diffraction field.    
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Figure 2. Reconstructed image.

For the experimental measurements the transmitter, test object and the

sampling probe were all suspended in a water tilled standard glass fibre

water—storage tank with approximate dimensions: 120 cm x 60 cm x 60 cm. For

all tests through transmission was used. The transmitter unit (3 x 3 mm) being

cut from a 1 MHz thickness mode resonance PZT—S transducer disc, and driven by

a gated sineusve burst of 20 cycles duration with an amplitude of 60 volts in

order to improve the signal to noise ratio of the received signal

 

The propagated wave on reaching the measurement plane was sampled by a single

manually scanned probe to perform point-hy-point sampling, over 60 x 60

sampling points spaced 1 mm apart.

The instantaneous value of the pressure signal at each sample point was

recorded twice with a time interval of a quarter period to specify the signal

Several test objects of different shape were used, Figure 3(3) is a photograph

of one of the objects used, an aluminium plate 2 mm thick in which 7 mm holes

were drilled, so that the test piece represented a high contrast object. The

magnitude of the recorded field in the sampling plane for this object is shown

in Figure 3(b). The reconstructed image using the self-focusing algorithm is

shown in Figure 3(a).

For Comparison the same data, together with the range, were used to produce a

reconstructed image by backward propagation, the result is shown in Figure 3(d).

          

   
  

     
        

An alternative analysis can he carried out by relating the spatial frequencies

in the sampling plane directly to those in the object plane.

The Fourier transform relating spatial frequencies to spatial variation in the

object plane is given by:
u

90(fx,fy) = JJ‘p(x,y,o) exp (—j2v(Exx + Eyy)) dx dy (13)

'3

The inverse transform expresses p(x,y.o) as a continuum of complex

exponentials of the form:

EXP CjZnfifo + fyy))

114 Proc.i.O.A.VolB Farl3(1955)
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Le. a

ptwm r mfg) exp (jZfox + Eny) dfx dfy
-n

where fix andfy are pasitive a: negative real variables.

Figure 3(b). Diffraction field

Figure 3(a). Self-Eocused image Figure 3(a). Backward pmpagltian
image '

In order to simplify the argument. without decreasing the validity, p(x.y,a)
is assumed not: to vary in the y direction. thus we can write (13) as:

a - 7 .

You“) - I po(x.u.o) exp (-jflwfxx) ch: (15)

Proc.l.0.A. Vols Panama)  
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A particular positive component in an object plane where there is no

variation in the y direction can be written as

Pxn+ exp (]2fonx)

This is in far: a coefficient of expCjant) where f is the temporal frequency

of the ultrasonic variation.

This is the normal complex representation of a sinusoidal waveform, and PK

is in general Complex and may bewritten in the form:
n+

I? 

 

P
xn+ n+

In real terms the actual pressure variation due to this single spatial

frequency is given by:

) (16)
F xn+Km cos (ant + lnfxnx + ¢p =

  

Similarly the corresponding negative exponential term:

Pxn_ exp (-32wfxnx)

represents a real pressure variation of

me (m

The positive (or negative) component on its own gives a variation in temporal

phase across the object plane but constant r.m.s. amplitude. Suitable

combinations of positive and negative terms represent variations in both

amplitude and phase.

p = cos (ZWEE w 2nfxnx + nxn_

  

In the special case under consideration, where there is a constant temporal

phase front given by one (ZFEE) in the object planeI it is necessary that

  

 

= P sayP xn

   

  xn+    

         

     

   

 

   

   ¢ =-¢ =¢ 53?
xn+ xn- xn

Thus in real terms the pressure variation at the real spatial frequency fx“ is

given by:

p = PX“ cos (ant + anxnx + ox“) + PX“ can (ant - vaxnx - ax“)

* 2 ? cos (inf x + o ) cos ant (18]
xn Kn. x11

abject plane in the spatial
The relationship between the sampling plane and

plane ultrasonic waves and is
frequency domain can be derived on the basis of

given by:

Ps(fx,fy) = PD(fx,fy) .exp (-jyz)

Proc.l.0.A. Vols Pant] (1986)
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where

 

when a positive (or negative) complex spatial frequency is considered

exp (—jvz) represents a phase shift which in real terms gives:

 

Pxn.‘ cos (wat + waxnx + oxn+ - vnz)

q _ _+ (Pxn_) cos (tuft Zflfxnx + pxn_ Ynz) (19)

It can be seen from (19) that it is not possible to distinguish between

temporal and spatial phase difference. If however the positive and negative

spatial frequencies are considered together, and a constant phase front in the

object plane is again assumed we have in real terms:

p5 = PX“ cos (ant + waxx + ox“ - ynz) + Pxn cos (2wft - znrxx - ox“ - v2)

= 2 PX“ cos (anxx . ox“) cos (ant - Yz) (20)

This is the same distribution as for the object plane, as given in equation

(18), except for a temporal phase lag of vz. Thus it can be seen that for any

pair of spatial frequencies (positive and negative) the amplitude and spatial

phase is the same in the sampling and object planes, i.e. there is no

dependence on 2.

There will however be both amplitude and temporal phase variation across the

sampling plane in the space domain, since in general more than one pair of

spatial frequencies will be present, and v is a function of ix (and Ey).

The problem now is to find a procedure, based on the above theoretical

background to give the pressure variation in the object plane from

measurements in the sampling plane in the space domain, without a knowledge

of z.

IMAGE RECONSTRUCTION TECHNIQUES

The process described in the section on self-focusing image reconstruction can

be related to the above analysis in the spatial frequency domain by relating

the functions P1(fx,fy) and pz(fx,fy), of stage (c) of the self-focusing

algorithm to equation (18). The in-phase components represented in p1(£x.fy)

give pairs of complex spatial frequencies of the form pxn+ cos “filo”:+ and

px“_ cos (yz)!oxn_ whilst the quadrature components give pxn+ sin (vz)/¢xn,

and pxn_ ain (yz)/¢xn_.
2

Thus P1(fx,f&)z * P2(fx.fy)2 contains components of the form lPxnl Zoxn ,

Pxn'to , with a phase

Equation (18) indicates an alternative algorithm, since the Fourier transform

'whence the square root contains terms such as

ambiguity of n radians as stated in stage (e).
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of the measured values in the sampling plane will give pairs of complex

IPxn*| Oxn‘ and thn_l Gxn_ wherecomponents of the form

 

9xn+ = wxn - Y2

and

Oxn- a 1,am i Y:

whence

m = (6m - om_)/2 ‘

Thus the amplitude, PX“, of a particular spatial frequency of equation (18) can

be determined from the square root of P 2 + P 2 and the phase ¢ from
lxn zxn xn

- 9xn_)/2. The division by 2 implies a 180° phase ambiguity.

CONCLUSIONS

(0xn+

The analysis given in the above sections has verified the basic self-focusing

algorithm but has further highlighted the problem of the w radian phase

ambiguity in the spatial frequency components of the reconstructed image.

Alternative algorithms have been tried which in certain circumstances can

give satisfactory results. However when these are checked against computed.

or analytically derived, Fourier transforms of object geometries their success

appears to depend on the particular properties of the object. The best

technique may be a compromise between self-focusing and maximum rate of change

of image. On this basis the n radian ambiguity of the self-focusing technique

could be resolved by assuming the spatial frequencies to be in phase in areas

where there are multiple zero crossings.
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