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INTRODUCTION

The finite element code ATILA has been specifically developed to aid the
design of piezoelectric transducers. mainly for SONAR applications [1.2].
Thus, it is able to perform the modal analysis of both axisymmetrical and
fully three-dimensional piezoelectric projectors. It can also provide their
harmonic response under radiating conditions : nearfield and farfield
pressure. transmitting voltage response. directivity pattern, electrical
impedance. Finally, it can supply important information which concern their
mechanical structure : displacement field. nodal plane positions. stress field
and various stress criteria ... The aim of this paper is twofold. First, a
brief description of the methods retained in the code is given. A particular
emphasis is placed on the finite element approach which is used to solve the
radiation problem and is related to monopolar [3.4] as well as dipolar dampers
[5-7]. Second. several typical resultsare presented. They correspond to quite
different structures and concern Tonpilz transducers [2.8.9], a deep
submergence ring transducer [10.11] and a low frequency flextensional
projector [12,13]. They demonstrate the actual abilities of the code, with
respect to experimental results, In conclusion, present developments are
described. with somedetails about the coupling with other approaches as well
as the modelling of new materials.

DESCRIPTION OF THE METHOD

To model a radiating piezoelectric transducer using the ATILA code. the finite
element mesh must include the structure as well as a part of the fluid domain
[2.12]. The unknown fields are the displacement field E in the whole
structure. the electrical potential w in the piezoelectric material and the
pressure field p in the fluid. The equations which have to be solved are.
first, the equation of motion in the structure, second, the Poisson equation
in the piezoelectric material and. third. the Helmholtz equation in the fluid.
Kinematic and dynamic continuity equations between displacement and pressure
fields are enforced on the interface. due to the variational formulation
[2,4], and an appropriate damping condition [2-7] is applied to the spherical
external surface F that surrounds the fluid domain. Then. the whole set of
equations is. in matrix form [2.7.14] :
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where :

- g. E. E are vectors that contain the nodal values of the displacement field.
the applied force and the pressure field.

- y is a vector that represents the outgoing flow through F.
- $3 is the applied voltage. while I is the entering current intensity.
- [Kuu] and [H] are the solid and fluid stiffness matrices.
- [M] and [M1] are the solid and fluid mass matrices,
- 5“? and Kw? result from the assembling of the piezoelectric and dielectric

matrices. followed by a static condensation of the internal potential
degrees of freedom.

- [L] is the interface connectivity matrix.
— g is a null vector,
— p and c are the fluid density and sound speed.
- m is the circular frequency.
- T means transposed.

If a dipolar damping condition is applied on the external boundary F. g is
given by [2-7] :

 

1 . w_ - J _
1 1 w 1 R c=.._.. _ ‘_Dp _ D'p 2g pc(R+aC)[]~+pc w2R2[]~ M

1+
Cz

where R is the radius of F. [D] and [D'] are obtained by assembling simple
surface elements from F. The first term is the monopolar contribution
associated with a spherical wave impedance and the second term is the dipolar
contribution.

In the case of an in-air analysis, the third line and column of equation (1)are deleted. To obtain the resonance modes and frequencies. $3 and E are then
cancelled and the eigenvalues of the remaining matrix are computed. To obtain
the antiresonance modes and frequencies. I and E are cancelled and the new
eigenvalues are computed. Finally. to obtain the harmonic response. E is
cancelled and g and I are obtained for given values of $5 and m. In the case
of an in-water analysis. the whole system is solved with 5 equal to zero. and
g, I and g are obtained for given values of $5 and m.

If, in the case of an in-water analysis. only the monopolar term is retainedin equation (2). it means that the external boundary F is in the farfield
region. Then. with respect to spherical coordinates. the pressure p on F can
be expressed by :

'

-ij
R.9. =p( <0) RR

 

we») (3)

and the transmitting voltage response as well as the directivity pattern of
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the modelled transducer are immediately obtained. However, the farfield
conditions are often drastic [2.15] and require large fluid meshes. Thus, to
overcome these difficulties and to allow a mesh size reduction, both monopolar
and dipolar terms are generally retained and F0 has to be deduced from a
special extrapolation algorithm [6,7,16]. In fact, the exact radiated pressure
field can be easily split following its multipolar expansion :

on

eJkr 2 F}, (9.0)

kr n=0 (jkr)n

  

P(I‘.3.‘P) =
(4)

where F1] is deduced from Fn_1 using a simple differential operator [5]. ThEn.
restricting the problem to the axisymmetrical case, Fo can be written :

170(6) = 2 am cos m9
(5)m

and. the various components Fn (8) being computed, the whole expression of
p(r.9) can be expanded in its various Fourier components. So. a limited
multipolar expansion is obtained from a limited set of am coefficients, which
has to be explicitely identified from the nodal values of the pressure inside
F. Finally, knowing the am values. the farfield is completely described.

Before concluding this section, it is interesting to point out the specialcase of a long ceramic stack. In this case. the motion of the stack. as well
as the motion of the tailmass if it exists, is often a simple dilational
motion. So, the stack can be modelled using the classical transfer matrix
approach. Then. the interface between the stack and the remaining part of the
structure is assumed to have a plane motion and only this remaining part has
to be described by a finite element mesh. Thus, the second line and column of
equation (1) have to be deleted. 5 being straightforwardly deduced from the
transfer matrix equations with respect to the applied potentials and thefrequency [1]. This mixed planewave - finite element approach has proved to
be really successful in a lot of examples.

DESCRIPTION OF TYPICAL RESULTS

Modal analysis of a Tonpilz transducer
The first example is a classical Tonpilz transducer (figure 1) which has to be
modelled using a fully three-dimensional finite element mesh. This mesh
describes only one quarter of the structure and contains 115 elements. 597nodes and nearly 1200 degrees of freedom. Numerical results are displayed inTable 1, while figure 2 presents the displacement fields associated with threeflexural modes of the headmass. Mode identification was experimentallyobtained using Chladni's method. which clearly demonstrated theaccuracy of the theoretical mode shapes. Moreover. keeping in mind the largesize of the numerical problem and the absence of adjusted parameters, theresults in Table 1 are quite good.
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f(FEM) f(exp) Mode identification

0.98 first dilational mode
first headmass flexural mode

second headmass flexural mode

first tailmass mode

second dilational mode

third headmass flexural mode

      
    

 

   1.98

 

    
  
   

Table 1. Resonance frequencies of the first Tonpilz
transducer. Values are scaled down to the
value of the first FEM mode frequency.
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Figure 2. Displacement field of the heedmass for modes 2. 3 and 6.
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SchematicFigure 1.
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Modal analysis of a ring transducer .
The second example is a special deep submergence transducer which is composed
of a thick ring with ten small Tonpilz radially fastened to its inside face
(figure 3). Assuming an identical electrical excitation of the ten ceramic
stacks. the finite element mesh can be reduced to one quarter of an 18 degrees
sector. This mesh contains 50 elements. 327 nodes and nearly 800 degrees of
freedom. Numerical results are displayed in Table 2. while figure 4 presents
the displacement fields associated with the second and third modes. Here
again, the accuracy is correct and the theoretical mode shapes were
experimentally asserted.

 

Mode f(FEM) f(exp) mode identification

ring radial mode

first Tonpilz dilational mode

ring ovalization mode

first tailmass mode

ring circumferential mode

 

  

  

      Table 2. Resonance frequencies of the ring
transducer.Va1ues are scaled down to the
value of the first FEM mode frequency.

    

cexaaics external ring

metallic join

:ailnasses thin electrodes

Figure 3. Schematic description of the ring transducer.
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Figure 4. Displacement field of the ring transducer for modes 2 and 3.

Harmonic analysis of a radiating Tonpilz transducer
The third example is an axisymmetrical Tonpilz transducer whichis radiating
in water. The finite element mesh is described on figure 5. Due to the simplebehaviour of the radiated acoustic wave, only monopolar dampers are retainedon F. The transmitting voltage response Tv of the transducer was computed and
measured for several different electrical excitations of the ceramic stack[9]. Figure 6 displays the variation of this response. versus reduced
frequency. for a special voltage shading which corresponds to a very largemeasured transducer efficiency across the whole frequency range. A niceagreement is obtained. which allows a powerful analysisof the main featuresof this curve (maxima. minima) in terms of mechanical effects (resonance, newnodal plane entering ...) [2.9]. The same accuracy was always obtained withrespect to the frequency spectrum for all the Tonpilz transducers we studied.However. in some cases. less accuracy was obtained with respect to the level.due to low values of the transducer efficiency. In these cases. materiallosses have to be modelled to overcome the discrepancy.
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FIGURE 6 : variation of the

transmitting voltage respons

versus reduced frequency

(full line: FEM, dashed line

measurements).
120

 
Harmonic analysis of a radiating flexural shell transducer
This final example is an axisymmetrical flexural shell transducer which is
described on figure 7. The analysis was performed using thin shell elements.
the mixed plane wave-finite element approach, and dipolar dampers upon the
external boundary P. which was assumed to be well inside the nearfield[12,13]. First. the transmitting voltage response is displayed, versus reduced
frequency. on figure 8. Apart from a slight upward shift of the curve at theupper limit of the range. which can be explained by the coarseness of the meshwith respect to the wavelength in this limit. the agreement is nice. Figure 9
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gives the directivity patterns
experimental results.
extrapolation and. finally,
integral formulation [17].

for

the finite element results

three frequencies. It compares the
before and after the

the results obtained from an exterior Helmholtz
using as

which was produced by the finite elem
input the transducer displacement field
ent computation. Beyond their accuracy,

these results demonstrate clearly the efficiency of the extrapolation methodto provide farfield quantities.
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FIGURE 8
voltage response versus reduced frequency
(full line: FEM, dashed line: measurements}.
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Figure 103. Directivity patterns, normalized to the same value. Full line :
FEM with extrapolation. Dashed line : measurements.

 

Figure 10b. Directivity patterns (without normalization). Full line (a)
FEM with extrapolation. Dashed line (long dashes (b)) : FEM without
extrapolation. Dashed line (short dashes (c)) : Helmholtz integral equation.

CONCLUSION

The previous examples actually prove the ability of the ATILA code to model
various kinds of piezoelectric sonar projectors. However. several new
developments are currently under test to improve it. They concern mainly the
modelling of material losses. to allow an accurate description of low
efficiency structures as well as of various new materials (viscoelastic
materials. new polymer and composite ceramics ...), the coupling between a
finite element modelling of the structure and an Helmholtz integral
formulation of the radiation problem [17]. such as to reduce drastically the
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mesh sizes. the coupling between a finite element modelling of the Structure
and simple approximate radiation models. and. finally. the creation of new
elements (GRP elements ...). This code has been in current use for three years
to help the design of new transducers. mainly for sonar but also for
macroscnics applications.
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