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This paper deals with the added mass of fluid around a cantilever rod vibrating transversely. 
This study is necessary to design a level switch sensor because its sensitivity depends on the 
change of the natural frequency in the presence of added mass effect. We considered solid and 
hollow cross-sections of elliptic and rectangular shapes with various aspect ratios and 
thicknesses. Stream function and velocity potential were obtained theoretically and numerically 
in the fluid adjacent to the rod, and the results yielded the added mass effect on the natural 
frequency of the bending vibration of the rod. After verifying numerical scheme by comparing 
its result with analytical one for a circular cross-section, we calculated numerically the effect of 
the added mass of fluid on the change of the natural frequency of a cantilever rod with various 
cross-sectional shapes. Experiments of modal testing support the calculated results. We showed 
the proportional relation of the sensor’s sensitivity with the added mass effect and thus with the 
aspect ratio and thinness of the cross-section. The results of this study can be used to design the 
cross-sectional shape of the sensor to increase or decrease the sensitivity. 
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1. Introduction 
A level-switch sensor using bending vibration is one of the devices measuring liquid or powder 

height [1]. It detects the presence of a medium at a particular height, based on the difference of the 
characteristics of bending vibration of a rod in air and in the medium [2,3]. The natural frequency 
and amplitude of the vibration of a rod decrease in liquid because of the added mass effect, which 
depends on the cross-sectional shape of the rod. Therefore, it is necessary to identify the added mass 
effect according to the shape of the cross-section in order to design the cross-sectional shape of the 
sensor rod increasing or decreasing the sensitivity. 

Kongthon et al. [4] presented the added-mass effect of cilia-based devices for microfluidic 
systems by modeling them as a rectangular cantilever. They reported the reduction of the natural 
frequency in the presence of the added mass. Sedlar et al. [5] experimentally investigated the added 
mass of the cantilever beam partially submerged in water. Zheng et al. [6] presented the design and 
theoretical analysis of a resonant sensor for liquid density measurement. They considered a tuning 
fork type sensor and reported the reduction of the natural frequency according to the mass density 
of liquid. Yeh [7] presented a theoretical method of calculating the natural frequencies of a free-free 
beam under liquids of various densities. He investigated the mechanism causing the change of 
frequency in water. Blake [8] theoretically and experimentally investigated the acoustic radiation 
from free-free beams vibrating transversely. Konstantinidis [9] dealt with added mass of a circular 
cylinder oscillating in a free stream. Zhu et al. [10] derived the added mass coefficient and the water 
level index formulas for bulkheads of rectangular liquid tanks. 

Based on the well-known theory on the transverse vibration of a cantilever rod [11], this paper 
deals with added mass of solid and hollow cross-sections of elliptic and rectangular shapes with 
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various aspect ratios and thicknesses. For some particular shapes, such as circular and elliptic 
shapes, the added mass is expressed theoretically from stream function or velocity potential [12]. 
After verifying a numerical scheme by comparing their results with the theoretically obtained 
results [13], the scheme is used to solid and hollow rectangular shapes of various aspect ratios and 
thicknesses. Modal testing experimentally supports the numerical results by comparing the natural 
frequency change related with the added mass effect. The sensor’s sensitivity is related with the 
added mass and thus with the aspect ratio and the thickness of the cross-section. 

2. Theoretical analysis 
A cantilever rod in liquid is schematically shown in Fig. 1. Transverse motion of the rod is 

affected by the added mass, or virtual mass in other words, of adjacent liquid. In this section, the 
added mass is obtained theoretically and it is related with the sensor’s sensitivity.  

The bending vibration of a cantilever rod can be described by the Euler-Bernoulli beam theory 
[11]. In the absence of liquid, the equation of motion of the bending vibration is expressed in terms 
of the transverse displacement ( , )w x t  as follows:  
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 where sr , E , sA  and I  are the mass density, Young’s modulus, cross-sectional area, area 
moment of inertia of the cross-section, respectively. The transverse displacement can be expressed 
as ( , )w x t  = ( ) exp( )W x i tw  by separation of variables for the rod vibrating with frequency w . 
Then, Eq. (1) is rewritten as follows:  
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Boundary conditions of a cantilever rod are 
   (0)  0W =  and '(0)  0W =   at  0x =    (3a,b) 

   ''( )  0W L =  and '''( )  0W L =   at  x L=    (3c,d)  
The characteristic equation satisfying Eq. (3) is as follows [11]: 

     [ ]6 cos( ) cosh( )  1   0L Lb bb + =            (4)  
Non-trivial roots of Eq. (4) are Lb  = 1.875, 4.694, 7.855, … The frequency in Hz unit is 
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Eq. (5) expresses the natural frequency of a cantilever rod in air.  
When the cantilever rod is fully submerged in liquid, its natural frequency is affected by the 

added mass of liquid as follows [14]:  
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where fr  and fA  are the mass density and added area of liquid, respectively. Here,  ff Ar  
means the added mass per unit length of the rod. The added area and the added mass are dependent 
on the cross-sectional shape of the rod. 

The irrotational motion of ideal liquid can be expressed in terms of stream function y  and 
velocity potential f  as follows [12]:  

    2   0y =Ñ  and 2   0f =Ñ       (7a,b)  
Kinetic energy per unit length of liquid is [12]  
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Figure 1: Schematic diagram of a cantilever rod in liquid.     Figure 2: Lines of the contour integral. 
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The contour integral in Eq. (8) can be conducted along the lines shown in Fig. 2. The integral along 
line (a) is zero because the velocity potential or stream function in negligibly small. The integrals 
along lines (b) and (d) cancel each other. Therefore, Eq. (8) becomes line integral along the contour 
of the rod cross-section as follows:  
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When the rod oscillates transversely with the velocity amplitude ( )U x  in liquid, the maximum 

kinetic energy per unit length is 21   
2 ffT UAr= , and the added area is 
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Examples of the cross-sectional shapes of a rod are shown in Fig. 3.  
For a circular cross-section of a rod moving transversely with velocity U  in a stationary liquid, 

the velocity of liquid at the boundary of the rod is 
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The solution of Eq. (7) satisfying the boundary condition (11) is [12]  
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r
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The velocity potential curves are displayed in Fig. 4(a) from the velocity potential function f  of Eq. 
(12b). Line integral of Eq. (10) with Eq. (12) yields 

   fA  = 
22 2

0
 cos da

p
q qò  = 2 ap             (13) 

Therefore, /f sA A  is 1 for a circular shape.  
For an elliptic cross-section of a rod moving transversely with velocity U  as shown in Fig. 3(a), 

elliptic coordinates x  and h  are introduced for the analysis as follows [12]:  
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(a)        (b) 

Figure 3: Cross-section of a cantilever rod; (a) ellipse, (b) rectangle. 

 
      cosh  cosx c x h= ,     sinh  siny c x h=                  (14a,b) 
The solution of Eq. (7) is 
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Line integral of Eq. (10) with Eq. (15) yields 
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Therefore /f sA A  is /b a  for an elliptic shape.  
For a rectangular cross-section, the velocity potential and added mass are calculated numerically 

in Section 3. 
The frequency f  expressed in Eq. (6) can be rearranged as follows:  
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The difference fD of the frequencies f  and 0f  is normalized by 0f  as follows:  
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When  ) /  )( (f sf sA Ar r  is much smaller than 1, Eq. (18) can be approximated as follows:  
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It means that the frequency difference fD  normalized by the natural frequency in air 0f  is linearly 
proportional to the area ratio /f sA A . The sensitivity of the level-switch sensor depends on 

0/f fD  and thus on /f sA A .  
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3. Comparison with FEA and experiment 
The added mass for arbitrary shape of the cross-section can be obtained by the finite element 

analysis. The theoretical results are compared with experiments for verification. 
For an arbitrary cross-section, such as a square and a rectangle, the added area can be obtained 

numerically by the finite element analysis. We used a commercial software ANSYS. 
Mathematically, potential flow problem has similarity with steady-state heat conduction problem. 
The governing equation is Laplace equation as follows [15]:  

     2   0T =Ñ             (23) 
where T  is temperature. Boundary condition for flow velocity / nf¶ ¶  corresponds to heat flux 

/T n¶ ¶ .  
Before calculating the added area for an arbitrary cross-section, the finite element analysis was 

carried out and compared with the theoretical result for a circular cross-section. The boundary 
condition (11) corresponds to the following expression:  

      -  cosT U
r

q¶
=

¶
  at   r a=         (24) 

The velocity potential around a circular cross-section was calculated and displayed in Fig. 4(b). 
The result is quite similar to the theoretical one shown in Fig. 4(a). The added area is calculated 
numerically from the stream function or the velocity potential function as follows:  

    2 2

1 1      f s sA n nU U
y fy fD D

= D = D
D Då å        (25) 

The ratio of added area fA  and cross-sectional area sA  for circular cross-section was 0.984. The 
numerically obtained value is accurate within 1.6% error.  
 

      
(a)         (b) 

Figure 4: Velocity potential curves around a circle; (a) theoretical analysis, (b) finite element analysis. 
 

For a square or a rectangle, flow velocity is U  along the lines normal to the motion and zero 
along the lines parallel to the motion. The results are displayed in Fig. 5 as velocity potential curves. 
The numerical values of /f sA A  ratio for rectangular cross-section are calculated for aspect ratio 

/b a  =  0.5, 1 and 2.  
In order to compare the theoretical results with experimental ones, the first natural frequency was 

measured by modal testing method. The experimental equipment consists of vibration sensors, a 
conditioning amplifier, and a signal analyzer, as schematically shown in Fig. 6. The measured FRF 
(frequency response function) curves reveal natural frequencies at the peaks.  
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(a)         (b) 

Figure 5: Velocity potential curves obtained by the finite element analysis; (a) square, (b) rectangle. 

The fundamental frequencies of the bending vibration of a rod in air are obtained for various 
cross-sections. The experimental results are compared with analytical results. The fundamental 
frequencies of a rod in water were calculated using Eq. (6) with the values of /f sA A . 

The frequency reduction fD  is normalized by the frequency 0f . Theoretical (or finite element) 
analysis results and experimental results were calculated from the data. The approximate results 
were calculated from Eq. (19). 

 

      
Figure 6: Experimental equipment.   Figure 7: Area ratio /f sA A  according to the aspect ratio /b a . 

 

4. Design of a level-switch sensor 
For the elliptic cross-section of a rod, the area ratio /f sA A  (= /b a ) according to the aspect ratio 

/b a  is displayed Fig. 7. For the rectangular cross-section of a rod, the area ratio is calculated by 
the finite-element analysis and the result is displayed in Fig. 7. The two results show similar trend.  

For the elliptic hollow cross-section of a rod, the area ratio is displayed as a function of the 
thickness of the cross-section in Fig. 8(a). This figure shows the results for the aspect ratio /b a of 
0.5, 1.0, and 2.0. The aspect ratio 1.0 corresponds to a circle.  

For the rectangular cross-section of a rod, the area ratio is displayed as a function of the 
thickness of the cross-section in Fig. 8(b). This figure shows the results for the aspect ratio /b a of 
0.5, 1.0, and 2.0. The aspect ratio 1.0 corresponds to a square.  
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Figure 8: Area ratio /f sA A according to the thickness ratio /t a  for various aspect ratios; (a) hollow ellipse, 
(b) hollow rectangle. 

 

5. Conclusion 
This paper applied the added mass of liquid around a cantilever rod vibrating transversely to the 

design of a level-switch sensor. Stream function and velocity potential were obtained theoretically 
and numerically in the liquid adjacent to the rod, and the results yielded the added mass effect on 
the natural frequency of the bending vibration of the rod. After verifying numerical scheme by 
comparing its result with analytical one for a circular cross-section, we calculated numerically the 
effect of the added mass of liquid on the change of the natural frequency of a cantilever rod with 
solid and hollow cross-sections of rectangular shape. Experiments of modal testing support the 
calculated results.  

   We showed the relation of the sensor’s sensitivity with the added mass and thus with the aspect 
ratio and thickness of the cross-section. The results of this study can be used to design the cross-
sectional shape of the sensor rod increasing or decreasing the sensitivity depending on the change of 
the natural frequency in the presence of added mass effect. 
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