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1, ABSTRACT

The finite element method has, for 2 long time, been applied 1o acoustic problems in the “low™ frequency range. Usually
response evalugtion relies on either direct response computation or modal superposition. The modal approach is
characterized by the selection of some reduced basis into which the original problem is projected and sobved.

An alternate non-modal approach is proposed here far acoustic finite element models with complex impedance boundary
conditions. The new procedure relies on generation of complex Ritz vectors. This basis is shown to have specific
advantages aver conventional modal basis : Ritz vectors can be generaled easily and for the same precision level, the
number of Ritz vectors can be shown 1o be less than the number of true eigenvectors,

Examplesare presented in order to demonstrate the efficiency of the proposed technigue which has been implementedino
SYSNOISE program [15) (General purpose program for acoustic modeling). .

2. INTRODUCTION
Application of the finite element methods to acoustic problems is not new. In fact, Helmholtz equation can be considered
&s & particular case of Navier equation so that it has been recognized, for a long time, that interior acoustic problems can
be solved using structural FE programs [1). Acoustic problems are however charatterized by some specific items, They
are formulated in complex terms (impedance boundary conditions, excitations not in phase, ...) so that practical treatment
must rely on programs allowing for complex variables computation and specific post-processing facilities (spectral
diagrams, directivity plots, etc...)

This requirement is even stronger far exterier (mbounded) radiation problems where finite element approach is not so
well suited. In such cases, boundary element methods can be used [2].

In this paper, anention will be devoied 10 4 new non—modal approach allowing to handle effciently acoustic finite element
models,

3. ACOUSTIC FINITE ELEMENT MODEL
Acoustic problems are governed by the wave equation :

LB g,
V’lp-t_l Y =0 inV (8]

where ¢ is the sound speed and ¢ the velocity potential related W pressure p-a.nd_ velocity v through relation

=X - oo di
p=-ef e diva | ' 2)
v=V‘DV - - 6]

where ¥ and @ represent fluid displacement and density respectively. -
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Allernatively equation (1) may be formulated in terms of p
1 &p
Vip— — —L =
LT @

The problem is usually subjecied 1o some boundary conditions {supplemented with appropriate initial conditions not
described here). ’

p=F on 5y &)
3
Z.on s ®

where F, &, denate fixed pressure and normal acceleration respectively.

Finite element modeling of conservative dynamical sysiems relies on Hamilton’s principle, This principle states that
beiween two instants of ime & and ¢, the motion proceeds so that the integral

J=r£d!_ | @

ia

is sr.at.ionarj for all pressures which satisfy boundary condition (5) and which coincides with the actual pressure of the
system at tp and ;. The so—called "Lagrangian™ L is given by

L=T_U -V,

where T is the kinetic energy, U; the strain energy and V, the external potential energy

1
T= 3 L o vvdv 8
Uisg | ect@mipav ®
V, = L} pou, dS ' am

In most of the cascs, additional impedance ¢r admittance boundary conditions are present which relate normal velocity
and pressure

P =Z v, onSs oy
or v,a A, ponSy {12)

where Z, and A, are normal impedance and admittance values respectively.

The usual impedance boundary conditions lead to the introduction of dissipative effects, A special variational formalism
for dissipative systems has been introduced by Morse and Feshbach [3), and has since been used by Gladwell [4, 5] and
Crapgs [6] for damped acoustic structural problems. The procedure involves the use of an adjoint system in which energy
accrues as it is being dissipated in the physical system. The extended system is thus conservative and the equations of
motion can be written in Hamillon's canonical form,
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First variation of the resulting functional with respect to the adjoint variables gives rise to the equation governing the

physical problem while the variation with respect (o the eriginal variables yields those govemning the adjoint problem.

Concentrating on the original problem, it ¢an be shown that final discrete sysiem 1akes the following farm [7]
MpisCp+Kp=¢f 13)

where the forcing vector f is dependent on normal accelerations prescribed an 5. Matrices X, M and C are given by

K= ZL_ BB 4\ (14
M= “—N-;ﬁdV‘ : (15)
C=§.:L’M.st', (16)

while p denotes now the vector of nodal pressures, Above expressions contain usval shape funclions matrices N and their
cartesian derivatives B,

4, CONVENTIONAL SOLUTION PROCEDURES IN THE FREQUENCY DOMAIN

Usually acoustic problems are solved in the frequency domain assuming a time dependence like £, so that system {13}
can be formulated as ¢ )

K+inC-o0Myp =f Q17

where p and f denote now pressure and excitation amplitwdes.

Various solution procedures can be used io get nodal pressures from (17). The ususal approach consists o solve directly
{17)at discrete frequencies. This technique can be used only for alimited number of frequencies or for small model s sizes.
The modal approach is more attractive in all other cases.

Totake into account absorbent materials, the procedure must rely on complex eigenmode extraction, A five step procediure
16 perform complex eigenmode extraction is summarized below,

Step 1 : Exraction of undamped modes (C= 0)
This operation relies on :
K- alM) py =0 k=1, ... m (18)

where @y and p,. are respectively (undamped) eigenvalues and eigenvectors. Only first m vectors are selected {(with
1 less than a, the number of effective degrees of freedom).

Let us define the modal base by :

Pp = (P,u. Pp- sy pp-J 7 (Ig)
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and express complex eigenmodes with reference 1o P, :

P=PX 20
The original cigenproblem :
K+inC-a'Myp =0 @n
can be projected into modal space so that :
K+ il -2 X =0 22)

where K = PIkp,
M = PINP,

¢ = Plce,

It must be pointed that £ and A mamices are diagonal ang the resulting eigenvalue problem is of order m (instead of
n) .

Problem (21)

reduced qua eNYa

entity and appers as :

P[RR [+ @

This reduced linear eigenvalue problem {order 2m) can be solved using the QR method after reduction to Hessenberg form
[16]. Transfromation (20) allows then to compute original cigenvectors.

can be linearized by adding some id

5. FORMULATION OF A RITZ TECHNIQUE FOR DAMPED ACOUSTIC SYSTEMS

Generation of the Rilz vectors basis for damped systems will rely on some equivalent first order farmulation of original
£quations in the time domain ‘

Mp+CpeKkp=f (24)
By adding the identity
Mp-Mp=0 (25)

the second order differential equation can be ransformed into a first order one by doubling the size of the system as
C M| [p -K 0)fpY _{f
[« 216)-[ 2] 6) -6 eo
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ar A.i=-B.1=y @n

ol
()~

The usual Ritz vector gencration process proposed by Wilson [8] far structural dynamic problems has to be appl:ed 1
system (20) and is summarized below.

First Vecior '
Computation of the first vector requires 1o solve the "static” problem
-B.xay (30)
Solution z; has to be normalized versus A matrix so that
dAn =l (31)
ditional Vi
Vector § will result from solution of
BfsAz @2)

Solution 5] has to be A—orthogonalized versus previous veciors. This process requires (o compule

= zf Az Gl ai=l) a3
and i =14 - Z gy (34)
Solution z;* is scaled so that

dAy=1 (35)

The following remarks have (o be done aboul the generation process -

Remark 1
Solution of system of equations involved in (23) may be formulated as follows

5206-6)
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and leads 1o

Kp=f 37
and Mp=0 (38)
or A=0 (39)

provided M is not singular, So the sobution of original second order system requires only to solve the system (30) of order
n. The same facility exists for system (25) rewritien as

[_"K ’3] (p) ) [Acf g] @::) 40)

and [cads to
Kpi=-Cpo - M py | (41)
Mp =Mp, (42)
ar PLE P (43)

‘The decomposition of K matrix has to be performed only once. Each Ritz vector delermination requires 0 solve for a new
right-hand side. I must be pointed that system (34) involves a real coefficient matrix while right hand side is usoally
complex.,

Remark 2
The orthogonalization procedure requires 1o compute c; coefficients using (26). This expression may be reformulated as

oo [5 4] 6) -

=p Cpi+p Mpi+ B Mp
so, that archival of C p;, M gy, and M p; afier generating j vecior appears useful,

Remark 3
The orthogonalization procedure involved in (26, 27) is performed versus the A matrix and allows 1o diagonalize the
projected A matrix but not the B matrix.

Remark 4
Special anention has tobe devoted o the reatment of singular systems (with zero frequency modes). This topic and details
about computer implementation have 10 be found elsewhere [14].
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Remark 5

The physical meaning related lo generation of Ritz vectors is obvious as pointed by Wilson [8]. First vector E;orrespunds
to the "static™ response while additional vectors take into account inertial and damping effecis.

6. EVALUATION OF FORCED RESPONSE IN THE FREQUENCY DCMAIN
In the frequency domain ( assumed lime dependence like exp{iwr) equation (17} can be refarmulated as

K-0’M+iwCp=f (as}

where p and f denote now pressure and load amplitude veciors,
Rewriting the Ritz vecior basis as

P =l py o pad {46)
where m is the number of vectars selected, solution p of (38) is approximated as
p=aPx @n

where x is the vector of participation factors. Substimtion of (40) into (38) leads afier premultiplication By PTio

R-aM+iwlr=}f (48)
where R =pkp
M = PTMP 49
¢ =rrce
i=FPr

Solution x of this reduced order system can be sought in some frequency range. Pressure p can then be recovered using
{40). As it can be seen, the Ritz vectors generation process, but also the projection process, can be speeded up by
memarization of producis X p;, M p; and C p;.

7. APFLICATIONS

Muffler System

The finite element method has been widely applicd to the study of muffler systems [9 - 12]. The peometry of a simple
mut‘ﬂser is given atFigure 1. The following material characteristics are selecied : sound speed = 340 m/s, density = 1.225
kg/m3,

Mixed boundary conditions are assumed. In the input section, a unit axial velocily is constrained while the impedance
atthe output section is simply set to be 416.5 rayls. An axisymmetric model is used for this computation, The'two meshes
selecied for this application {mesh A : 349 nodes, 288 elements; mesh B : 1273 nodes, 1152 elements) arc represented at
Figure 2. Response is evaluated in the frequency range 10 10 2000 Hz. The insenion loss factor (/L) is computed from
relation '

=10 |og|§l (50)
(]
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where v; and wp are axial velocities in input and output section respectively. Response’s evaluation has been performed
using 1wo Ritz vectors bases (10 and 20 vectors). Plot of IL facior versus frequency is provided in figure 3 together with
the "exact” numerical solution (resulting from direct response option) and the approximate “plane wave™ solution.

Computation times for generation of basis and evaluation of forced response are given in Table 1 for the two meshes.

number of veciors basis generation forced response
{200 frequencies)
mesh A mesh B mesh A mesh B
10 15.87 77.28 11.26 1217
20 49.39 231.51 2923 29.76

Table 1. Compulation times {sec, VAX station 3100) for mufflers response using Ritz vectors technique.

The direct response aption {solution of whole éystem a1 each discrete frequency) gives computation times lisied in Table
2 '

Case direct response
mesh A 300.68
mesh B 2861.65

Table2.  Computation times (sec, VAX station 3100) for muffler’s response using direct response technique.

Car Companment

This 2-D application is related to the design of car comparimenis. Excitation is due to front vibrating panel (normal
velocity amplitude = 0.001 m/s). Absorption material (specific admittance = 0.05 + 0,10} is used for the seats, carpeting
and headliner {as indicated in Figure 4). "All remaining boundary surfaces are assumed to be rigid. The Finite element
mesh is given at Figure 5. The acoustic response at driver’s ear was computed in the 1 - 200 Hz frequency range. Results
are presenied in Figure 6 for various computational strategies :

G casel: direct response without ahsorplion material,
G case2: direct response with ahsorption material,

G case3d: superposition of 12 Ritz vectors,

G casc4d: superposition of 14 Ritz vectors,

G case5: superposition of 16 Ritz vectors, -

Computation Limes are given in Table 3.
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number of vectors basis gencration forced response
" (200 frequencies)
12 18.76 12.53
14 2403 1535
16 29.94 1921
direct response (200 frequencies) 37347

Table 3.  Computation times {sec, VAX station 3100) for car compantment.

8. CONCLUSIONS

Arefined Ritz vectors technique has been presented for acodstic finite elemenimedels. This procedure enables generation
of non~modal complex bases. Such basesare less expansive to generate than modal bases and allow to perform efficiently
forced response of dissipative systems in the frequency domain,
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Figure 1. Geomerry of a simple muffler
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Figure 2, Muffler system - Mesh A ' Muffler system ~ Mesh B
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l/\i SYSNOISE — SYSTEM FOR NOISE ANALYSIS

VERSION vAX 4.0 L 18.09.89 OCATE @ 25-JAN-1990 13:32:43

AXISYMMETRIC “MFFLER

DIRECT RESPONSE
PLANE WAVE MODEL
10 RITZ VECTORS

SRS

20 RITZ VECTCORS

IL FACTOR

-10.60 —1
i
-20.00 i
-30.00 . i i o= ; PO,
10000 1000.0 20000
FREQLENCY (Hz)

Figure 3. Muffler system -~ Insertion loss factor

Figure4, Car compartiment — Boundary conditions
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Figure 5. Car compartment - 2-D finite element mesh
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Figure 6.  Car Compartment — Acoustic response at driver’s ear (pressure in dB, reference value 1 10-5 Pa)
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