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1. ABSTRACT

Tlte finite element method has. for a long time. been applied to acoustic problems in the "low" fi'equenc)‘ range. Usually
response evaluation relies on either direct response computation or modal superposition. The modal approach is
characterized by the selectitm of some reduced buis into which the original problem is projected and solved.

An alternate non-modal approach '5 proposed here for acoustic finite element models with complex impedance boundary
conditions. The new procedtn‘e relies on generation of complex Ritz vectors. This basis is shown to have specific
advantages over conventimal modal basis : Ritz vector: can be generated easily and for the same precision level. the
number olRitz vectors can be shown to be less than the ntunba of true eigenvectors.

Examplesare presented in order todernonso-ute the efl'tciency of the proposed technique which has been implemented into
SYSNOISE program [15] (Genaal purpose program for acoustic modeling). 1

2. INTRODUCTION

Application ofthe filtite element methods toacoustie problems is not new. In fact. Helmholtz equation can be considered
as a particular case of Naviu' equation so that it has been recognized. for a long time. that interior acoustic problems can
be solved using mural FE programs [1]. Acoustic problems are however characterized by some specific items. They
are formulated ineomplex ta-rns (impedance boundary conditions, excitations not in plme. n.) so that practical treatment
must rely on programs allowing for complex variables compulsion and specific post-processing facilities (spectral
diagrams. directiviry plots. etc")

This requirement is even stronger for exterior (unbounded) radiation problems where finite element approach is not so
well suited. In such cases. boundary elementmethods can be used [2].

In this paper. martian will be devoted to a new non-modal approach allowing to handle etl'ciently acoustic finite element
models.

3. ACOUSTIC I-‘INITE ELEMENT MODEL

Acoustic problems are governed by the wave equation :

1 fl _ .
V'p-éa‘, -0th (t)

where r: is the sound speed and w the velocity potential related to prustue p and velocity v through relation

=—g%=—pc’d€vu V (2)

v 1: VV (3)

where u and 9 represent fluid displacementand density respectively.
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Alternatively equation (1) may be {emulated in toms ofp :

l 61;:

 

V“ — — — = 0P 8 ar “’
The problem is usually subjected to some boundary conditions (supplemented with appropriate initial conditions not
described here). '

P = 7 0n 51 (5)

B
3% = '9 a; on 52 ' (6)

where p'. I. denote fixed pressure and normal acceleration respectively.

Finite element modeling of conservative dynamical systems relies on Hamilton's principle. This principle states that
between two instants of time c and 1,. the motion proceeds so that the integral

'1
J=ILdt (7)

I.

is stationary for all pressures which satisfy boundary conditiou (5) and which coincides with the actual pressure of the
system at to and I). The so-called "Lagrangian" L is given by

L=T—U,—V.

where Tis the kinetic energy. M the strain energy and V. the external potential energy

1
TeiLgvde (8)

=1 2 - aU, 2 JV 9: (dzv M)W (9)

V,=_ pu.d$ (10)
3:

ln most of the cases. additional impedance or admittance boundary conditions are [resent which relate normal velocity
and pressure

p = z. v. ens: (11)

or V. = A. P 0" 53 (‘2)

where L and A, are normal impedance and admittance values respectively.

The usual impedance boundary conditions lead to the introduction of dissipative efl'ects. A special variational formalism
for dissipative systems has been introduced by Morse and Feshbach [3]. and has since been used by Gladwell [4, S] and

Craggs [6] fordarnped acoustic strucuual problems. The procedure involves the use ofan adjointsystem in which energy

accnres as it is being dissipated in the physical system. The extended system is thus conservativeand the equations of

motion can be written in Hamilton's canonical form.
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Frrst variation of the resulting functional with respect to the adjoint variaqu gives rise to the equation governing the
physical problem while the variation with respect to the original variables yields these governing the adjoint problan.
Concentrating on the original problem. it can be shown that final discrete system takes the following turn [7]

Mfi+Cp+Kp=f (l3)

where the forcing vector] is dependent on normal accelerations prescribed on $3. Matrices K. M and C are given by

K = 2L starv- (I4)

M=zL—N;—Ndv- ' (I5)

caziguwww, (16)

while pdenotes now the vector ofnodal pressures. Above expressions contain usual shape functions matriccsN and their
cartesian derivatives III

‘. CONVENTIONAL SOLUTION PROCEDURB IN THE FREQUENCY DOMAIN

Usually acoustic problems are solved in the frequency domain assuming a time dependence like e“ . so that system (I 3)
can be formulated as : ' I

(KI-imC—m’mta =f (17)

where p andfdenote now pressure and excitation amplitudes.

Various solution procedures can be used to get nodal pressures from (17). The ususal apmch consism to solve directly
(I 7)atdiscrete frequencies. This techniquecanbeusedonly foralimited numberoffrequenciesorforsmall model'ssius.
The modal approach is more attractive in all other cases.

To takeinto account absorbentmaterials.the procedure must rely on complex eigenmode extraction. Alive step procedure
to perform complex eigenmode extraction is summarized below.

WEED.) i
Thisopaation relieson: ' I

(Ir—arm p. =0 l = I. m (It) ‘

where 01,. and p, are respectively (undamped) eigenvalues and eigenvectors. Only first In vectors are selected (with
In less than II. the number of effective degrees of freedom).

qr '¢I-- II“ I evl'll

Letusdcfinethemodalbaseby:
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and express complex eigenmodes with reference In P, :

P = P,x (20)

The original ciganproblem:

(K+imC-m’M)p=0 (21)

can be projected into modal space so that:

(rhwé—w’nhx =0 (22)

where I? = Film,

if = PINP,

C = chr,

It must be pointed that I? and A? mattith are diagonal and the mulling eigenvalue problem is of order m (instead of
n) .

  
    

Problem (ll) can be linearized by adding some identity and tippers as:

7; lg “i (23)

This reduced lineareigenvalue problem (order 7)") can be solved using ther method after reduction toHessenberg form
[16]. Transfromation (20) allows then to compute original eigenvectors.

n" nu l‘ H

5. FORMULATION OF A RITZ TECHNIQUE FOR DAMPED ACOUSTIC SYSTEMS

Generation of the Ritz vectors basis for damped systems will relyon some equivalent firstorder [emulation of original
equations in the time domain ‘

Mfi+Cp+Kp=f (24)

Byaddingtheidentity

Mp—Mp=o (25)

the second order differential equation can be uansfon'ned into a first order one by doubling the size of the system as

C M p -K 0 p _ I[min-[Mint m
‘154 Proc.l.O.A. VOI12 Part 1 (1990)
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or A.z'-B.t y (27)

. CM -K0
wnh A=[M°].B=[° M] (28)

new)
The usual Ritz vector generation pocess proposed hy Wilson [8] for structural dynamic problems has to be applied In

system (20) and is summarized below. V

Wat ‘

Computation of the first vector requires to solve the "static" problem

—5 . r: u y (3°)

Solution 2; has to be normalized versus A matrix so that

z: A z, a t (31)

H. m

Vector i will result from solution of

a z: = A at, (52)

Solution 1: has lobe A—onhogonatized versus mvious vectors. This process requires In compute

c, = 4.4 x; on]. ....r—)) (33)

and z." = 1" - 2 c, r, (34)
.5:

Solution 2.” is scaled so that

z! A r. = 1 (35)

The following remarks have to be done about the generation process:

mm
Solution of system of equations involved in (23) may be formulated as follows

[5.216940
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and leads to

K P: =f (37)

and M p: = 0 (38)

or bi = 0 (39)

providedM is not singular. So tlte solution of original second order system requites only to solve the system (30) oforder
n. The same facility exists for system (25) rewritten as

['o" 3] (2:3) = [i ‘5] (2:) to)
and leads to

RP: =—CPH—Mljt.t - (41)

Mfi=MmJ an

or pi = m (43)

The decomposition of K mattix hastobe performed only onoe. Etch Ritz vector determinationrequires to solve for a new
right—hand side. it must be pointed that system (34) involves areal coefficient matrix while right hand side is usually
complex,

Remarkl
The orthogonaliution procedute requires to compute c,- coefl‘tcients using (26). This expression may be refonmtlated as

c, = of. p!)
' (44)

=flcfi+fiMfi+fiMfi

so. that archival of C P! . M P; mm! M ‘5, after generating j‘h vector appears useful.

Remain

The onhogonalization procedure involved in (26. 27) is perfumed versus the A matrix and allows to diagonalize the

projected A matrix but not the B matrix.

EMA
Special attention has lobe devoted to the treatment of singular systems (with zero frequency modes) This topic and details

about computer implementation have to be found elsewhere [14].

856 > Proe.l.0.A. Vol 12 Part 1 (1990)  
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Remarki
The physical meaning related In generation ofRitz vectors is obvious as pointed by Wilson [8L First vector correspondsto the "static" mponse while additional vectors take into account inertial and damping effects.

6. EVALUATION OF FORCED RESPONSE N THE FREQUENCY DOMAIN

In the frequency domain ( msumed time dependence like up(iwt) equation (17) can be relonnuiatcd as

(K -— at’M + itan =f (‘5)

wherep andf denote now pressure and load amplitude vectors.

Rewriting the Ritz vector basis as

P = (A. Pa: p.) (46)
where m is the number of vectors selected, solution p of (38) is approximated as

p t: PX
(‘7’

where: is the vector of participation factors Substitution of (40) into (33) leads afler prernultiplt'cation by P710

(Latithwouf (48)

where I? - Wk?
15! = WM? (49)
c = prcr
i = 1’7

Solution x of this reduced order system can be sought in some frequency range. Pressure p can then be recovered using(40). As it can be seen. the Ritz vectors generation process. but also the projection process. can be speeded up bymemorization of products Kpi. Mn- and Cpg.

7. APPLICATIONS

MW
The futile element method has been widely applied to the study ofmufller systems [9 — 12]. The geometry of a simple
mut‘lller is given at Figure 1. The following material characteristics are selected : sound speed = 340 m/s. density = 1.215kym .

Mixed boundary conditions are assumed. in the input section. a unit axial velocity is constrained while the impedance
at theoutput sectio ‘ imply set to be 416.5 rayls. An axisymmetric model is used for this computation. 'l‘lte'two meshes
selected for thisapplt ‘on (mesh A z 349 nodes.288 elements; mesh B : 1273 nodes. 1152 elementsJare represented al
Figure 2. Response is evaluated in the frequency range lo to 2000 Hz. The insertion loss factor (IL) is computed from
relation

  

IL=10 loglél (50)
D
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where w and up are axial velocities in input and output swt‘ion respectively. Responsc's evaluation has been puforrned
using two Rill vectors bases (10 and 20 vectors). Plot of IL factor versus frequency is provided in figure 3 together with
the "exact" numerical solution (resulting from direct response option) and the approximulc "plane wave" solution

Computation times for generation of basis and evaluation of forced response are given in Table l for the two meshes.

number of vectors basis generation forced response
(200 frequencies)

mesh A mesh 3 mesh A mesh 3

15.87 77.28 11.26 12.”

49.39 23l.Sl 2923 29.76

Table l. Computation times (sec, VAX station BIOO) for muffler's response using Ritz vectors technique.

 

The direct response option (solution ofwhole system at each discrete frequency) gives computation times listed in Table
2. '

 

Table 2. Computation times (see. VAX station 3100) for muffla's response using direct response technique.

SlaLComnanmsm

This 2—D application is related to the design of car compartments. Elcitation is due to front vibrating panel (normal
velocity ampliuide = 0.00] m/s). Absorption material (specific admittance = 0.05 + 0.10 i) is used for the seats.carpeting
and headliner (as indicated in Figure 4). 'All remaining boundary surfaces we assumed ID be rigid. The finite element
mesh is given at Figure 5. The acoustic response atdriver‘sear was computed in the l — 200 Hz frequency range. Results
are presented in Figure 6 for various computational strategies :

G case l : directresponse without absorption material.

G case 2 : direct response with absorption material.

G case 3 : superposition of 12 Ritz vectors.

G case 4 : superposition of 14 Ritz vectors.

G case S: superposition of 16 Ritz vectors.

Computation times are given in Table 3.

858 Proc.I.O.A. Vol 12 Part 1 (1990)  
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basis generation forced response
' (200 frequencies)

24.03 l5.35

29.94 19.11

Table 3. Computation times (see. VAX station 3100) for car compartment.

 

8. CONCLUSIONS

A refinedRitz vectors technique has been presented formttstic finiteelementmodels. This procedurcenablcsgenctation
olnon-tnodal complexbases. Such basesure less expansive to generate than modal bases and allow topcrforrn efficiently
forced response of dissipative systems itt the frequency domain.
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Figure 1. Geometry ofa simple mufl'le:
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Figure 2. Muffler syslcm u Mesh A Muffler Syslam 1 Mesh B
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Figure 3. Muffler system - Inserticm loss factor
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Figule 4. Car companimem 7 Boundary conditions
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figure 5. Car comparinan — 2—D finil: eIunem mesh
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Figure 6. Cu Compartment A Acoustic response al driver’s ear (pmssurc in dB, rcfcrence value 1 10—5 Pa)
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