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1. INTRODUCTION

The direct boundary integral formulation [1] is the usual mathematical basis selected for

developing a boundary element (BE) model suitable for modeling acoustic radiation from
submerged structures. This BE model can also be used with a conventional structural finite
element model for modeling fluid-structure interaction effects where it is known that the

external (or internal) fluid greatly modifies the structural response (added mass effects).

The extension presented in this paper deals with submerged structures with thin
appendages, In such cases. the direct pressure formulation is not well suited and is prone to

errors along the thin components. A more rational approach involving pressures and jumps

of pressure is presented together with a variational solution scheme. This choice ensures
the symmetry of the related fluid matrices and allows the reflective coupling with a finite

element structural model for handling elasto-acoustic problems. The basic theoretical

background is outlined.

2. DIRECTNARIATIONAL BOUNDARY ELEMENT METHOD

2.1 Direct boundary integral representation
The so-called direct boundary integral formulation has been described elsewhere [1]. It

allows one to relate the pressure at a field point X (in volume V) to the pressure and the

normal presswe gradient on the boundary surface S :

 

0G(X.Yl oin)DOG-Hr!in any ——JnTG(X.Yl}d5(Y) (1)

where G is the fundamental solution of the Helmholtz equation with a point source.

The normal derivative of (1) at some external poim X is the starting point for the
development of a variational principle and can be formulated as

 

ap(X) _ J’G(X.Y) _ 0p(Y) 0G(X,Y) as Y

an, IIPIYI anxony any any I I I I2)
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Using Stokes theorem [2.3.4], (2) can be rewritten as

M- {{‘l‘Y—‘(m .VXG<X.Y))}ds<vi+m -j {NPlYlfilxfllldSlYl
S

a a"x "v (3)

+01: A Vx)-J((nv A VvP(Y))G(X.Y)}dS(V)
S

where A denotes the vector product operator.

lf the field point X reaches the boundary surface 8, one obtains the refined expression

k’nx 'JiWPKV)G(X.Y)) dsm + ("x a VX)‘J{(“V A Vip(Y))G(X.Y)}dS(Y)
S S

(4)

  

- ap‘x’ . cr=vI {
5

«mm .3M any (nx va(X.Y))}dS(V)

where the last integral has to be evaluated in the sense of a Cauchy principal value [5] :

cw”

s E—‘O

in this expression. Ee is the neighborhood of X on the boundary surface 5.

rpm
am

  

9:3) (nx -VxG(X.Y))}dS(Y) - lim J' { (nx -va(x.v))} asm
5-5, (5)

2.2 Variational principle

The variational principle is obtained by multiplying each term of (4) by a virtual increment

dp(X) and integrating on the boundary surface 3. Using integration by parts leads to the

following result [6] :

kifllopixmvitnx -n.)G(x.Y)ldsmd5txi - [flu-x a mum-(nv A VvapiY))G(X,Y)}dS(Y)dS(X)
S S S S 6

RPM ( )
0nV

  

(nx - V‘G(X,Y))}dS(Y)dS(X)(X). 15pm) aznx dS(X) o {Hem
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of

up) - o
(7)

where the functional J is given by

2

40:) = %II{P(X)P(Y)(M 'nv)G(X.Yl}dS(Y)dS(xl
5 5

— fiflfinx a VxP(X))'<"v A va(Y))G(X-Yl}dS(Y)d$lX) (a)
S S

alum _ mam ,_£p(X)WdS(X) 15pm my (n, V‘G(X.Y))}d$(Y)dS(X)

2.3 Discrete boundary element model
Discretization of functional (8) is based on some approximation of the boundary surface S
and the selection of appropriate interpolation (shape) functions for the boundary pressure
and the normal velocity (or pressure gradient) :

s - é - 2 5,

P00 - N.(X)P (9)
V.. (X) - Nlean

where P and V“ are vectors of nodal pressures and normal velocities, respectively while Np
and Nv are the matrices of interpolation functions.

Note that the normal velocity vn is related to the normal gradient of pressure through the
relation

I

1 ["900

 

X - —— 1V"( ) —iptu an, ( 0)

Substitution of (9-10) into (6) allows one to write the discrete functional 3 as

30:) . gplomp 4, imvflc + scalp (11)
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where

DUK) - fink", rmm:(X)N,(Y)G(X,Y)}dS(Y)dS(X)
s s (12)

-JJ{(nx I. V‘ND(X))-(nv A VVNF(Y))G(X,Y)}dS(Y)dS(X)
s s

c - J'{NI(X)N,(X)}dS(X) (13)
5

Elk) - jleiixwvnw -vyG(X.V))}dS(Y)dS(X) (14)
s s

Stationarity of (11) with respect to P leads to a system of equations :

D(k)P - —ipm(CT + B(k)’)v,. (15)

where D(k) and B(k) are frequency dependent matrices D is symmetric while B is

unsymmetric.

3. REFINEMENT OF THE DIRECT FORMULATION
FOR STRUCTURES WITH THIN APPENDAGES

3.1 Updated varlatlonal statement
It the vibrating structure has thin appendages, the (closed) boundary suriace can be divided

into several parts related to the main body and the upper and lower faces of the thin

components. The methodology to be followed in this case can be formulated with reference

to the boundary surface presented at Figure 1.

 

Figure 1 : Structure with athin appendage
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The whole boundary surface S is made from three parts 8., S; and S; (as indicated in

Figure 1) :

s-s.us;us; (16)

The boundary element model presented in the previous section remains applicable for this

case but further simplifications can be introduced by a careful examination of the terms

involved in the functional (8).

Looking at the first double surface integral involved in (s), the boundary Surface partition (16)

allows the related (l1) term to be decomposed as :

Il - JIF,(X.Y)dS(X)d$(Y) + mem dS(X)dS(Y) + Umxxmsrstm
5.5. 5.5; s.s;

+ Jjarx.v>ds(strv). I JF‘(X,Y)dS(X)dS(Y) + j jarxymsrxlasrv) (17)

555. 5555 Sis;

+ JJfi(X,Y)dS(X)dS(Y)+ I J'F‘rxxmsrxmsrv) e HF.(X.Y)dsrxldS(Y)
s;s, 5:5,; s;s;

where F1(X.Y) is given by the expression

3

firm) 3%("x -r~)p(X)P(Y)G(X.Y) (18)

This expression can be lurther simplified because S; = S; and n+ = - n‘ along the mean

surface S”. The result is that expression (17) can be rewritten as

I, - HF,(X.Y)uS(X)dS(Y) + 2 I IF.(X,Y)dS(X)dS(Y) + 2 J' JF,(X,Y)dS(X)dS(Y)
s,s_ 5.5; 5.5;

(19)
+ I JF.(X,Y)dS(X)dS(Y) + 2 j IF.(X,Y)dS(X)dS(Y) + “arxxmsrxlusrvl
sgs; 5.;5; sgs;

Defining the jump of pressure variable m along S; as
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turf-r

allows funher simplification of (19) and leads to the final form

I. -3 Mn, ‘m)P(X)P(Y)G(X-Yld5(xldle)
s,s,

+1 I k’(nx ‘wlplxlulYlG-(X.YldS(X)dS(Y)
5.5;

~% J' {Wu '"v)ulxlulV)G(X.YldS(Xldle)
5:5;

The second double surface integral involved in (a) can also be translormed following the
same process. The resulting integral (l2) can be expressed as

'2 - -% I fl"): A “900) '("v AVvPlY))G(X.Wd5(X)dS(Yl
5.5.

- I [(nx a vxprxn-(w A Vvu(Y))G(X.Y)dS(X)dS(Y)
s.s;

'1 ("x A qulxl)'(nv A VvulYl)G(X.Y)d5(X)dS(Y)
25‘5'

The third integral in (8) also takes the alternative form

0PM) (15 X
rinx ( )

I: - {almigfixfldsrxr JMX)
5. Si

while the last integral can be transformed according to
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1. - -J'J'F‘(X.Y)dS(X)dS(Y) — J' IF.(X.Y)dS(X)dS(Y)
5,5, 595.

- I IF‘(X.V)dS(X)dS(Y)-J JF.(X.Y)dS(X)dS(Y) (24)
s5. 5s;

—f IF. (X.Y)dS(X)dS(Y)
s s;

where F4 stands for the following function

 

F.(x.vi - 900 “53’ (nx risotto) (25)
Again the identities S; = S; and n+ = - n‘ lead to the final iorm

l. - - I Ip(X)-a§r(‘%(nx vierxxilasrxidsrvi
s.s. (26)

- I Immafivflm -VXG[X.Y))dS(X)dS(Y)
s;s,

The sum of the two last integrals in (25) is zero because normal velocities on S; and S; are
related through

v‘ - —v' (26)

so that the normal pressure gradients along 8; and S; are equal in absolute value but have
opposite sign.

3.2 Updated discrete variational term

The discrete form relies on approximating the boundary surface S_and S; (Figure 2). Note

that S; has been removed from all the integrals involved in the above variational statement
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and that S; can be made the same as the mean surface S, provided the thickness Is small
versus the acoustic wavelength.

5. is: sags: (27)

Appropriate imerpolation functions for the pressure p on Sland the jump of pressure In on

8; have to be selected :

NX) - Np.(X)P (25)

MX) - N... (X) J, (29)

where P and Jp are the vectors of nodal pressures and jumps of pressure, respectively.

%

Figure 2 : Boundary element discretization

The discrete updated functional therefore takes the following form

J(P.J,) - %{P7Du(k)P z, 2WD.h (10.1,, + J10..(k)J,}

. ipu,{v,f_c_P . vJ.c..u, . valenmp o v;e..rnJ,}

where

Bulk) - k‘ II("X MN;(XiN,.(Y)G(X.Y)95(X)dS(v)
§.§.

— I first A VxN...(X)) '("v A VvNulYl)G(X.Y)dS(X)dS(Y)
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3.00 - j [Nthwsmtnv-VYG(X.Y))dS(X)ds(v) (32)
53,

and

C. - INleantYidNXl (33)
s.

Similar expressions can be obtained for the other matrices involved in (30).

Stationarity of (30) with respect to P and Jp leads to the following set of equations :

a:
— - 0—- D_(k)P + on. (m, — —ipmc.'v,,_ - ipruBL(k)VMaP (34)

§- o _. DLMP + Dump, . 4pm;an - ime;(k)Vm
n

or

DEW) Dlh(k) P . CItBIJk) 0 [VM]
[01.00 D..(kl][d.]"'“"’[ aim c: v". (35’

The solution of this symmetric system of equations (with prescribed boundary normal

velocities) gives the nodal pressures on S.and the jumps at pressure on 5;. From these

boundary variables. field pressure can be computed using the integral form (1) rewritten as

flG(X,Y)

 

dS(Y) (as)

 

ac.er _ apmany TmGtX.Y)}dS(Y)¢Iu(Y)pm - Ham
5, s;

3.3 Llrnlt cases
It is instructive to look at the particular form of (35) when one of the boundary sub-surfaces

S. or S;.vanishesi

if the boundary surface reduces to S. (3.1.: 0). then the system (35) appears as

D. (klP - —imu(BL(k) o Clivn. (37)

Proc.I.O.A. Vol 15 Part 3 (1993) 593

  



  

Proceedings of the Institute at Acoustics

AN EXTENDED ACOUSTIC BOUNDARY ELEMENT METHOD

while the case S - 8; (SI = 0) leads to the system

Data‘in - -Iw0.IV.. (35)

already encountered with the so-called indirect boundary element ionnulation [7] which

applies to a wide range of thin (open or closed) structures and is available within the

SYSNOISE program [3].

3.4 Compatibility requirements

The discrete model for the mixed case relies on the use of appropriate interpolation

functions. This requirement is also related to the compatibility at pressure and jump at

pressure along the imersection of S_ and S; sub-surfaces. Looking at the junction llne

(Figure 3), the following constraint can be lormulated

Pi ' Pu ' PI (39)

where mi is the nodal iump of pressure at the junction on é; while pu and p. are the upper

and lower pressures at the closest nodes on 3..

 

Pl

Figure 3 : Junction between S. and 5; surfaces

Complementary relations like (39) are constraints between nodal variables which can be

accounted for using the Lagrange multipliers technique. They have to be supplemented with

free edge constraints (me=0) at the other end extremities (figure 3).

4. CONCLUSIONS

An extended acoustic boundary element model has been presented in order to handle

radiation from structures with thin appendages. The formulation relies on a direct boundary

integral representation. The simplifications related to the thin components have been

introduced in the variational statement and leads to a mixed form involving pressure
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variables on the main body and jump of pressure variables along the mean surface of the
thin appendages. These two sets of variables have to be matched along junction lines using
appropriate constraints. The resulting boundary element model is characterized by an
optimal choice of the boundary variables which contributes, In turn, to reduced model size.
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