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SUMMARY

We present here a new method for estimating the noise model received on a
large array of sensors (high number of sensors). With this aim in view, we
present an algorithm which uses conly the outputs of beamforming as observa-
tions. The asymptotic Eroperties of the method are detailed, an extension to
the multifrequency estimation 1s then proposed. Finally, simulation results
confirm its interest.

The developed method proves robust and efficient. Its low computation cost
should allow to include it easily into classical array processing and to im-
prove its performances.

1. INTRODUCTION
The problem of noise correlation estimation is crucial for high resolution
(H.R) methods. Especiall{ in the underwater acoustic area where the additive
noise may be highly correlated (sgatially) ; even an isotropic noise can lead
to strong correlations (between the sensors of the array).

For the sequel, we call additive noise the sum of all the noises received on

the array, i.e. the sum of ambient mnoise, traffic noise, flow noise... We
shall simply consider that it is constituted by the part of the received si-
gnal which 1s not fully spatially cocherent. is definition is not without

ambiguity but it is well suited to array processing.

The spatial correlations of the noise result in spatio-temporal properties
(noise directivity) which are the major tools for array processing. The noise
directivity is generally non constant (in spatial frequency) for a (spatially)
correlated noise. The consequences of these variaticns may be dramatic for
high resolution methods. The classical beamforming is fortunately much more
robust, however the detection of weak sources can be seriously affected by
the noise directivity. .
In order to remedy these problems, heuristic algorithms have been developed
but they are essentially local and this fact can lead to severe drawbacks. On
the opposite, our method consists in estimation of a global method (i1.e. va-
lid for all the spatial frequencies). The proposed method uses as observation
the beamforming outputs which are the basic quantities for all sonarists,
Furthermore, it enjoys the following properties otherwise its practical inte-
rest should be null : robustness, Eow cost of computation, convergence
ensured.

The method relies upon the definition of a functional named relative entropy
functional. Maximizing that functional requires iterative methods (gradienmt’'s
like). After a study of the properties of such alﬁorithms, the derived esti-
mates of the noise model are carefully studied. Then we present an extension
of the method to multifrequency estimation of the noise model whose practical
interest is evident.

Simelation results illustrate the practieal interest of our method fer clas-
slcal array processing,

2. RELATIVE ERTROPY FUNCTIONAL (REF). DEFINITION AND PROPERTIES

Consﬂder an array of sensors constituted by n, equispaced sensors. Then at a
given frequency (f,), omitted for the sequel, the only available observations
are the array outputs whose an exhaustive estimate is the estimated inter-

spectral matrix R. The problem consists now in separation of sources and noi-
- 5@ pﬁrt and amounts to solving the following ill posed problem :

167



Proceedings of the Institutue of Acoustics

Le Cadre et al, Noise Model Estimation.

R-~S+8B (1)
(5 : cross-spectral matrix of sources, B of noise).

Without supplementary hypotheses, the above problem has no meaning. At this
step, it is necessary to add hypotheses which are :

- sources number majorized
- B corresponds to a short correlation hypothesis,

This last hypothesis is fundamental. Using the fact that many vectorial sam-
ples of noise are available along the array and the concept of mutual infor-
mation, a functional (called Relative entropy functional) is derived and gi-
ven by the formula below [1] :

H(B) = Log det(R - B) + L . Log det B (2)
(det : meaning determinant of a square matrix).

In formula (2), L is a scalar factor called redundancy factor {relatively to
the correlation length of the noise). The numerical problem consists now in
determining the matrix B (definite positive) which maximizes the REF H,

Note that maximization is achieved only w.r.t. the parameters defining B, For
instance, B may be parametrized by a spatial MA model, an AR model, etc...

Replacing R by its exact value (i.e. : R) and calling B, the exact noise ma-

trix and A} the eigenvalues of the matrix B;‘.B then the following funda-
mental property is available [1,2].

Prop. 1 : Let {A?} the eigenvalues of the matrix B;'.B. then if B is the ma-

trix maximizing H (under the constraints : B and R-B definite positive), then
these eigenvalues satisfy the following inequalities :

AW M
L/L+l € X; €1 o

- -1 a
; : eigenvalues of B’ . B)

The proof of this property needs elementary but rather tedious calculations.

Obviously as L increases, the eigenvalues i: tend towards 1 and therefore ﬁ

(méximizing H) tends towards By (for any matricial norm).

An  equivalent propertz will be demonstrated much more easily,. furthermore an
intuitive meaning of this property will be given.

Furthermore the following property ensures that gradient method will converge

Prop. 2 : The REF is concave w.r.t. spatial noise correlations.

Properties 1 and 2 show the practical interest of the REF method for noise
model - identification, The gradient vector as well as the optimal step are
straightforwardly calculated, leading to an efficient and feasible method.
However its cost of computation increases greatly with the sensors number and,
furthermore, it dont use the beamforming outputs’. Conversely in the case of a
1ar§e carray it will be possible to derive (from the previcus one) a method
avolding these two problems.

| ' :
By wusing spatial frequency analysis the matricial expression of the REF will
be trahs%ated into another one involving only scalar formulas,
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3. REF AND SPATIAL FREQUENCY ANALYSIS
First, we shall define the basic quantities used for the rest. Considering a

spatio-temporal process X(t,M) indexed by ti C
correlation : = ¥ (t,M) y time and space with spatio-temporal

R(t,r) = E(X(t,M) . X(t - T, M - )]

its spatio-temporal demsity P(f,k) Is defined by [3]
. -
P(f.k) - IR‘ R(T,r) e ¢iMf. ™k or) g gy | (3)

The frequency f will be omitted for the sequel, we shall call R(k) and B(k)
the spatio-temporal densities of the array outputs and of the additive noise.
The array being assumed linear the vector becomes a scalar equal to its
first component,

The other ingredient is the theorem of Szegd [4] which will be precised now.

Consider f(x), a real function, 1ts Fourler coefficients are defined as :

G, =—. e 1P% f£(x) (dx) n=0, %1, *2,... (4)

-m

then the quadratic (Toeplitz) associated forms defined by :

T, (f) = > Cpopp U, - 4, . (5)
pw,v=0,1,..,n

or !

1 . .
T, (£) - > lu, + uy, e+, +u e "2 f(x)dx n=0,1,2,.. .  (6)

-

The eigenvalues of T, (f) are the roots of the characteristic equation
det[T (f) - AId] = 0 and denoted as A}, A5,...,A),,. Then the theorem of
Szegd can be expressed as below :

Let F(£) a continuous function on the interval [a,b], then :

F(A]) + F(AD) +...+ F(\0,y)

1 B
lim —— = o F(f(x)) dx . (7)
n - o

1‘ -
Here, we shall consider that F is the logarithm (Log) and we deduce from
Szegd's theorem :
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n+l

1 1
lm  — 3 Log A, - = - Log £(x) dx
n = g N+l in 2w
-

(8

If, furthermore, f({x) is the function P(f,k) defined by (3), then the follo-

wing result is obtained :

1 1
1i — 1, det = e—— .
. iﬂm ] og de (Rfo) T Log P(fo,k) dk .
-W

(w : spatial bandwidth i.e w = d/A,, X : wavelength at £,).

(9}

Finally, assuming that the number of sensors ig high, the REF takes the form

below

H = Log [R(k} - B(k)] dk + L . Log(B(k))dk .
-W -W

(10)

The problem consists now in estimating the spatial density B(k) which maximi-

zes H. This problem needs itself an adeguate parametrization of B(k).
all the parametrizations, a spatial MA mo
sical defined by :

4

B(k) = o + F(Z) - F'(z ")
with
, d
F(2) =1+by - 27+ .. +1p, «2F
. Z = exp(2iwkd), d : intersensor distance .

Among
el is quite convenient, it is clas-

(11)

Actually, the major part of physical noise (i.e generated by physical hypo-
theses ~about the” spatial repartition of elementary sources of noise) may be

modelled by a spatial MA noise model of a reasonable order.

Assumin% that the received noise may be modelled b¥ 1a MA model, then the
en o

coefficlents of the MA model maximizing H satisfy the
Appendix A)}.

lowing property (see

Prop. 3 : Let Bi L the coefficients of the MA model maximizing H defined by

(3) then they satisfy the following inequalities :

b? - b, -l £1 - |— =1,2,...,p .
1S - B; ) b?l |L+1 i p
1

(bY : exact value of the parameter).
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Remark that this result does not take into account the estimation errors of
R(k) otherwise L would chosen as great as possible. It's mnot a statistical
result but it precises Prop. 1.

If b? is positive, (12) becomes :

b? - o1 < by, < by . (13)

This last property is illustrated by fig. 1 which regresents the shape of the
REF H when the noise is a MA model and in presence oI one source.

T Rt NI Wl | e rompr ey e ey ey ey
"/
/
S50 9%y B
b a0
[}
5
¢ [ ] TR e R FEE LR [RTTURR. SN ‘..4_.__.4--...-1._-._1-._.-.-4
o -.10 E” -.20 -3 -

Fig. 1 : H(b,, b;)
1 source : 8 : 45°, o= 0.

bruit MA d'ordre 2 : b,

1
1, by =.-0.3

We can see, on fig. 1, that H is concave and that its extremum satisfies
Prop. 3 (L =1). The estimated coefficients are respectively b, = 0.71 and
51 = -0.22 : at a first glance this result seems not very good but in fact

~ ~

the ratio by/b, = -0.309. The noise model being defined except for a multi-
plicative }actor (for the spatial whitening), this result is quite
acceptable.

The functional H being defined, we shall now consider its maximization,

4. MAXIMIZATION OF H

Practically R(k) is not available, two types of methods can then be used ;
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4.1 Simultaneous estimation of R(k) and B(k)

R(k} = S(k) + B{k)
S{(k) may be modelled by an AR model (with poles close to the unit circle),
i.e :

02
S(k) = ——— | (14)
IA(Z) |12

The numerical problem consists now in estimating simultaneously the polyno-
mial A(Z) and B(Z), leading to the following constrained problem :

Max H(A,B)
under the constraints :

J‘_Jw R(k) exp(2imkjd) = r(jd)

(E(jd) ! cross-spectrum of two sensors spaced of jd). (15)

That formulation, rather similar to the classical maximum of entrogy, does
not lead to simple calculations. Therefore, a simpler approach is prefered.

4-2- R(k) is replaced by an estimate

Obviously, it is possible to replace R{k) (in{l0)) by an estimate. It can be
the discret Fourier transform defined by :

ng-1
R(k) = D E(jd).w(j).exp(2inkjd) . (16)
j=-ng+1

(n, = number of sensors).

In formula (16), the (w(i)} represent the array weighting. A useful weighting
is given by the classical triangle function i.e :

R(k) =D, *+ R - D, (17)

(D, : steering vector associated to k [5], R : estimated CSH).

The main drawback of this weighting comes from enlarged lobes but its main

advantage 1iIs to ensure ositiv¥ of the estimated R(k). For most of the prac-
tical cases, formula (l7§ is quite satisfying.

The gradient vector calculation is straightforward and described below :

1) Let B be the covariance matrix of a MA model, then [ ]
’ P P
B - & ZbiYi] [ S b; Y| = 0?8, - BE a8
i=0 1=0

with Y; a rectangular (n xn +p) matrix defined by :
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e
aH Dg [¥;Bf + ByY{] Dg
2) 5]?-‘: - sinB do
i Jo DO(R-B) De
M
Dg[Y; B} + B,Y!] Dg
- L " - sind do
Jo  Do(By-B}) D

A convenient approximation of the optimal step of the gradient method is of
fundamental importance In practice. Usinﬁ the matricial formulation of H,
e

this optimal steg may be estimated as the value of the scalar p maximizing
the expression below :

n n
H(p) = O Log(l + pA¥) + L . > Log(l - puf) . (19)
i=1 i=1

where A? and p% are respectively the eigenvalues of the matrices (ﬁ-Bk)°1Dk
and B;1Dk (B, : noise matrix at the k-th iteration, D, gradient matrix).

These eigenvalues are approximated by the samples values of the spatial densi-

ties d(k)/;(k)-b(k) ; d(k)/b(k) (with samples defined by : k,d = m/m,
l1€<m<ng).

This approximated step size of the gradient is quite satisfying and ensures a
fast convergence of the method under the positivity constraint (r(k)-b(k) > 0)

5. REMARKS ABOUT THE REF

The propert{ 2 shows the interest of our method for mnoise model estimation.
The fig. 2 illustrates the behaviour of the methods which consists in seeking

the more random noise model (i.e maximizing Log det B or j?wLog B{k)dk) under
the positivity constraint about R-B.

Actually the progosed method can be considered as a deconvolution method ;

the aim being the estimation of the noise model seen by an array of known
transfer function.

A parallel can be made with regularization methods of ill posed problem due to
Tikhonov which consist in replacing the problem AZ = y by the problem below :

Min £(2) = NAZ - yl2 + AIPZN® . ' (20)
z ,
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In the above formula, A Is called the regularization parameter and determine
a compromise between regularization and exact data proximity.

In the REF functional, the term Log(R-B) can be seen as a "barrier functio-
nal" which avoids sources description by noise model. The role of the term
L.log(B(k)) is to take into account the uncertaint about B and overall to
ensure the position of the maximum of H (see fig. 2{.

Another practical problem is induced by the choice_of the parametric model
order of noise. It may be estimated by several wa¥s 57]. However, the methods
performs very well ~(Prop. 3 1is still satisfied) when this order is
overdetermined. ~

A b

DBarrier..

>
0 1 b;
0// bV Ta \ l i

Fig. 2 : Shape of the REF functional (radially).

6. MULTIFREQUENCY ESTIMATION OF THE NOISE MODEL

We assume that the additive noise may be described by a common spatial model

{(with different samﬁling at each frequency), this hypothesis seems quite ac-

ceptable. We shall develop now a method taking advantage ftrom this
" hypothesis.

Consider the frequency f , at that frequency assume that noise may be model-
led by a MA, let be :

B(f,,k) =0? Il +Db, - Z+...+by 212

p
£, .
Z = exp(-2inkd) , k = = cos0 (0 : bearing) (21}
fO fO

The wavenumber k varying from - - to — . It can be deduced from the noise

model an estimate of the cross spectrum r, (£,,£€), let :

/2d
r, (£,.4) = B(f, k) e 21™k% g | (22)
- 1/2d

and more generally one has (unicity of the noise model)
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/24
Ty (£;,nd) = B(f, k) e 2174 g1 | (23)
- 1724
but :
B(f; k) = oIl + byZ, + ... + b, 2P[?

Z; = exp(-2inf, /C d cosB)

1
Now can also be written as :

F.
Z; = exp(-2iw £ /C cosB® ;) with A; =4 EL
[+]

so that finally :
r, (£;,nd) = r, (£ ,nd £, /£,) . (24)

Under the indegendancy' hypothese for Fourier transforms (at different fre-
quency}, the multifrequency REF takes the following form

2f
H= :E [Log(ﬁ(fi,k) - B(f; ,k)) + L Log B(f; k)] dk (25)
£i-f, -u
it is maximized by the previous gradient method.
The basic hypothesis (unique noise model) may be a little restrictive but it
can be easily relaxed by use of extension models [8].
7. SPATIAL WHITENING

Assuming that a noise model have been estimated, the (numerical) problem con-
sists now in whitening the data,

For that_ purpose, the classical method consists in Choleski factorlzation and
matricial inversion of the triangular factors. For larﬁe arraKs, this method
is drastically costly and can present furthermore some drawbacks,

%n og?er to remedy these problems the following approach seems much more pre-
erable :

1) determine an AR filter equivalent to the MA model

2; the whitening filter is then [A"(Z")]'1 = a(z M
3) compute the whitened spatial covariances :

r, () = AR,A"  with :

1 a,....8, r(€) r(€-1)....... r(£-q)
0
a- |° , R, = . (26)
0 01 a a, r(£+q) r(&+l) r(&))
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Consider now the effect of that whitening on a source ; let :
R,(8) = A (Dg Dg) A"
the whitening method enjoys the following properties
1) rank(R,(0)) -1
2) ADg=(1+a '™ ..+ a, e'9%) D'y . (27

From (27}, we see that whitening as defined by (26) does not modified sources
properties. These formulas suggest also a fastier whitening methed, i.e. con-
pute :

£6) = (5 '(8)) . Dy . R . Dy (28)

8. SIMULATION RESULTS

Fig. 3 illustrates the benefits given by the proposed method for beamforming.
The quality of estimation of the noise model is quite satisfyinE. After whi-
tening the weak source (100°) is clearly seen, the sidelobe at 140° complete-
ly canceled. The residual noise (after Whitening) is perfectly white.

Simulation : 30 capleurs 300 moyennos
2 sources - 0j = 457 110°
L=5 gi=1.0 .05
: Bruit MA simulé : 4 coefficients:

1.0 0.5 -0.2 -0.7
29 ler. Bruit estimé:
1.10 0.33 0.00 -0.47

10+

!

I

0 30 180
DSP Avam blanchiment
DSP Aprés blanchimoent

beamforming without whitening
=*= *— == beamforming after whitening

Fig. 3 : Beamforming after whitening
For this simulation the gradient method converges in about 10 iterations.
ig. 4 illustrates the interest of multifrequency estimation, especially in

F I
resence of a great number of sources [91 the multifrequency estimation en-
Eances considerably the quality of the nolse model estimation.
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Simulation @ 30 capleurs 300 moyennes 3004 i
10 sources i '
La5 N ; \,
Monofrequency estimation '&p [V
|
i
200 -
300 - - /
f AN : . ]
A \ N '\ il o~
{
. \) 100- L i ! RPAaSAT
200- / o o | g T
] ! . -7 Sl
. \\ ]’
. - ) Ir
v \ N
- ~ .- el LT
e . .’ ~. 0--—— o e T ey oy \
100 -p== u----_:\ . o 40 180
- V;\ Kﬂ- Multifrequency estimation
Al ir
Yoo/
N
o . __..-_..‘.'.T'.. B e, ___ Sourco + Bruil
0 90 180 Bruil simulé
Bryit eslimé

Fig. 4 Multifrequency estimation
9. CONCLUSION

A novel method for noise model estimation in presence of sources has been de-
It uses beamforming outputs as data and is therefore well suited to

veloped.

large arrys. Its computation cost does not depend on the sensor number.

Furthermore, its robustness w.r.t.

b theoretical considerations

requency analysis has been presented.
The d
enhance sonar performances with a low computation cost.
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APPENDIX A

The aim of this ag endix is to prove the basic Property 3 of the REF : with.
the notations of (1 ? one obtains :

OH Re (z' F(k)) [LR(k) - (L+1) B(k))
b, g [R(K) - B(k)] B(k) dk (A1)

If no source is present, a direct consequence of (Al) is that partial deriva-
tives 9/0b;H are nulls when Bi is equal to b§ |—— (b exact value of the

parameter). H being a concave functional w.r.t the {bi} one deduces that :

. . [T
By | = b o1 fori=1,...,P . (A2)

Things are less clear in the presence of sources. Consider now the weighted
sum of partial derivatives, i.e. : :

Rl
i1 o

using (Al) one obtains straightwardly :

P e S(k) B, (k) - (L+1)/L B(k)
> b, ==L mdk+L ORI dk . (A3)
bi 1 -W -W

(1) (2)

"(with R{k) = S(k) + B, (k) ; &(k) signal density).
Let us examine now the respective signs of quantities (1) and (2) of (A3).

The term (1) is positive since S(k) and R(k) - B(k) are positive (whatever k)
by assumption.

Divide now the {b;} domain in 4 zones, as illustrated below :

v ]
i %, 2,
[ Ve
I"’z'('%_-n' .
i Z}
B

We shall first show that the maximum of H cannot be in the zone Z;. More pre-
cisely, when the coefficients (b;) satisfy the following inequalities :
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| L
. el |— = ...P
Ib; I < IbS1 1 for i = 1,2, (A4)

one obtains easily that :

P
L+l L+l
(B, (k) - —I B(k))dk = D [(b3)? - —; bé] . (45)

- i=0

Moreover, one can assume that R(k) - B(k) is greater that a scalar o strietly
positive (otherwise if R(k)-B(k) — O on a non zerc-measure set, then H —+ -00),
so that finally :

~

P
JdH S(k) 1 (L+1)
b, — 2> L — gk + — B {k) - B(k
1 ! 9b; R(k) - B(k) a (B, (k) L (] dk
i= -W -W
Hence
: b 2 >0 {(Z,)
i 3p. on 144
=i %

The only one hypothesis which has been used till .is the positivity of S(k),
but actually S(k) corresponds to the spatial density of sources.

For instance, assume that only one source is present :

S(k) = — ; Z_ : source pole
1Z - Z,1

therefore :

o.2
(1 - 1Z,1%)

S(k)

1
R(k) - B(k) o

If the coefficients {b;} belong the Z, or Zy, the term (2) 1s not necessarily
positive but is bounded. On the other hand, the term (1) is great (Z, near

P
8
the unit cirele : source pole). Therefore the sum E; b, EE—H is asymptoti-
i=1 i

cally positive on Z, and Zj.

If the coefficients (b;) tend towards their exact values, H tends towards - oo,
Finally, the maximum is in the zone Z, itself determined by the conditions :

b, - b}

1

L
<IBS1 (1 - |— “1.2,...
! ey 1 (1 L+1) for 1 = 1,2, P | (a6)
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