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SUMMARY

We present here a new method for estimating the noise model received on a
large array of sensors (high number of sensors). with this aim in view, we
present an algorithm which uses onlythe outputs of beamforming as observa-
tions. The asymptotic roperties of the method are detailed, an extension to
the multifrequency est mation is then proposed. Finally, simulation results
confirm its interest.

The developed method proves robust andefficient. Its low computation cost
should allow to include it easily into classical array processing and to im-
prove its performances.

1. INTRODUCTION

The problem of noise correlation estimation is crucial for high resolution
(H.R) methods. Especially in the underwater acoustic area where the additive
noise may be hi hl corre ated (spatially) ; even an isotropic noise can lead
to strong corre at ons (between t e sensors of the array).

For the sequel, we call additive noise the sum of all the noises received on
the array, i.e. the sum of ambient noise, traffic noise flow noise... We
shall sim 1y consider that it is constituted b the part of the received si-
gnal whic is not fully spatially coherent. is definition is not without
ambiguity but it is well suited to array processing.

The spatial correlations of the noise result in spatio-temporal properties
(noise directivity) which are the major tools for array processing. The noise
directivity is generally non constant in spatial frequency) for a (spatially)
correlated noise. The consequences 0 these variations may be dramatic for
hi h resolution methods. The classical beamforming is fortunately much more
0 ust, however the detection of weak sources can be seriously affected by

the noise directivity.

In order to remed these problems, heuristic al orithms have been developed
but they are essent ally local and this fact can ead to severe drawbacks. 0n
the opposite, our method consists in estimation of a lobal method (i.e. va-
lid for all the spatial frequencies). The proposed met od uses as observation
the beamforming outputs which are the basic quantities for all sonarists.
Furthermore, it enjo s the following properties otherwise its practical inte-
rest should be null robustness, ow cost of computation, convergence
ensured.

The method relies upon the definition of a functional named relative entropy
functional. Maximizing that functional re uires iterative methods ( radient 5
like). After a study of the properties 0 such algorithms, the derived esti-
mates of the noise model are carefully studied. T en we present an extension
of the method to multifrequency estimation of the noise model whose practical
interest is evident.

Simulation results illustrate the practical interest of our method for clas-
sical array processing.

2. RELATIVE ENTROPY FUNCTIONAL (REF). DEFINITION AND PROPERTIES

Consfider an array of sensors constituted by ns equispaced sensors. Then at a

given frequency (fo), omitted for the sequel, the only available observations

are ;the array outputs whose an exhaustive estimate is the estimated inter-

spectral matrix R. The problem consists now in separation of sources and noi—
.se part and amounts to solving the following ill posed problem 2
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R = S + B (1)

(S : cross-spectral matrix of sources, 8 of noise).

Without supplementary hypotheses, the above problem has no meaning. At this
step, it is necessary to add hypotheses which are 2

- sources number majorized
- B corresponds to a short correlation hypothesis.

This last hypothesis is fundamental. Using the fact that many vectorial sam-
ples of noise are available along the array and the concept of mutual infor-
mation, a functional (called Relative entropy functional) is derived and gi-
ven by the formula below [1] '

“(5) - Log detdi - B) + L . Log det n (2)

(det : meaning determinant of a square matrix).

In formula (2), L is a scalar factor called redundancy factor (relatively to
the correlation len th of the noise). The numerical problem consists now in
determining the matrix B (definite positive) which maxrmizes the REF H.

Note that maximization is achieved only w.r.t, the parameters defining B. For
instance, B may be parametrized by a spatial MA model, an AR model, etc...

Replacing R by its exact value (i.e. : R) and calling Bn the exact noise ma-

trix and A: the eigenvalues of the matrix B;‘.B then the following funda-
mental property is available [1,2].

Prop. 1 : Let (A?) the eigenvalues of the matrix B;'.B, then if 3 is the ma—
trix maximizing H (under the constraints : B and R-B definite positive), then
these eigenvalues satisfy the following inequalities :

L/L+l < S: < 1 (X: : eigenvalues of Bg‘ . 3)

The proof of this property needs elementary but rather tedious calculations.

Obviously as L increases, the eigenvalues i: tend towards l and therefore i
(maximizing H) tends towards Bo (for any matricial norm).

An equivalent property will be demonstrated much more easily,.furthermore an
intuitive meaning of t is property will be given.

fprghermore the following property ensures that gradient method will converge

Prop. 2 : The REF is concave w.r.t. spatial noise correlations.

Properties 1 and 2 show the practical interest of the REF method for noise
model identification. The radient vector as well as the o timal step are
straightforwardly calculate , leading to an efficient and easible method.
However its cost of computation increases greatly with the sensors number and,
furthermore, it dont use the beamforming outputs. Conversely in the case of a
large .array it will be possible to derive (from the prev1ous one) a method
avo ding these two problems.

I ‘ >
By usin spatial frequency analysis the matricial ex ression of the REF will
be trehs§ated into another one involving only scalar ormulas.
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3. REF AND SPATIAL FREQUENCY ANALYSIS

First, we shall define the basic quantities used for the rest. Considering a
s atio—tem oral rocess X t,M indexed b ti _
cgrrelatiog - p ( ) 3' '“e 8"“ 5P3” “1th Spatio temporal.

R(t.r) = |E[X(t.M) . in: - 1', H - r)]

its spatio-temporal density P(f,k) is defined by [3]

_ i

p(£,1<) - IIR‘ R(‘r,r) e‘sz-T” -” d1 dr . (3)

The frequency f will be omitted for the sequel. we shall call R(k) and B(k)
the spatio-temporal densities of the array out uts and of the additive noise.
The array being assumed linear the vector becomes a scalar equal to its
first component.

The other ingredient is the theorem of Szegé [A] which will be precised now.

Consider f(x), 3 real function, its Fourier coefficients are defined as :

C = —— . e‘i'”l f(x) (dx) n — 0, i1, 12,... (h)

-‘N

then the quadratic (Toeplitz) associated forms defined by :

T"(f) - 2 CW“ u” . GI, . (5)
u,v=0,l,..,n

or:

1 . .
Tn(f) - —— lu° + u1 e'x+...+ u e'""|2 f(x)dx n-0,1,2,.. . (6)

2w I1

-17

The eigenvalues of Tn(f) are the roots of the characteristic equation

det[Tn(f) - AId] = 0 and denoted as A?, X2,...,A:,1. Then the theorem of
Szego can be expressed as below :

Let F(£) a continuous function on the interval [a,b], then :

F0?) + F(A'2‘) +...+ FOR”) 1
“1:12”+= 2—“ F(f(x)) dx . (7)

i -1r

Here, we shall consider that F is the logarithm (Log) and we deduce from
Szego‘s theorem :
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1lim — 2 Log As - —"- Log f(x) dx . (a)
-'IT

If, furthermore, f x is the f ti P f,k d ' -
Hing result is obtagngd : unc on ( ) efined by (3), then the follo

l l1‘ _—__ = __..n :mm n+1 Log det(Rf°) 2” Log P(fo,k) dk . (9)

—W

(N : spatial bandwidth i.e w = d/Ao, A :.wave1ength at £0).

ginally, assuming that the number of sensors is high, the REF takes the forme ow :

H = Log [R(k) - B(k)] dk + L . Log(B(k))dk . (10)
-u -V

The problem consists now in estimating the spatial density B(k) which maximi—zes H. This problem needs itself an adeguate parametrization of B(k). Amongall the parametrizations, a spatial MA mo e1 is quite convenient, it is clas-sical de ined by :

B(k) - 02 - N2) - fa“)
with

F(Z)=l+b1-Z"+...+bp ~z"
Z = exp(2inkd), d : intersensor distance . (11)

Actually, the major part of physical noise (i.e generated by physical hypo-theses about the s atial repartition of elementary sources of noise) may bemodelled by a spatia MA noise model of a reasonable order.

Assumin§ that the received noise may be modelled by a MA model. then thecoeffic engs of the MA model maximizing H satisfy the allowing property (seeAppendix A .

Frog. 3 : Let hi'L the coefficients of the MA model maximizing H defined by
(3) then they satisfy the following inequalities :

s lI(b? _ bi'L) . __4 g 1 - __— i = 1,2,....p . (12)

(b? : exact value of the parameter).
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Remark that this result does not take into account the estimation errors of

R(k) otherwise L would chosen as great as possible. It's not a statistical

result but it precises Prop. 1.

If 1)“? is positive, (12) becomes :

L .
b“-’- H—l s bi'LSb? . (13)

This last property is illustrated by fig. 1 which re resents the shape of the

REF H when the neise is a MA model and in presence 0 one source.

   

Fig. 1 : H(b°, b1)
1 source : 8 2 b5”, o= 0.1
bruit HA d'ordre 2 z b = 1, b1-.-0.3

We can see, on fig. 1, that H is concave and that its extremum satisfies

Prop. 3 (L — 1). The estimated coefficients are respectively be = 0.71 and

£1 = -O.22 : at a first glance this result seems not very good but in fact

the ratio 1; /Bo - -0.309. The noise model being defined except for a multi-

plicative actor (for the spatial whitening), this result is quite

acceptable.

The functional H being defined, we shall now consider its maximization.

Ii. HAXIMIZATION OF H

Practically R(k) is not available, two types of methods can then be used :
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4.1 Simultaneous estimation of R(k) and B(k)

R(k) - S(k) + Mk)
$(k) may be modelled by anAR model (with poles close to the unit circle),i.e :

02

S(k) =-_ . (14)
111(2) I2

The numerical problem consists now in estimating simultaneously the polyno-mial A(Z) and B(Z), leading to the following constrained problem :

Max H(A,B)

under the constraints :

ff” R(k) exp(2i1rkjd) = {-(jd)

(r(jd) : cross-spectrum of two sensors spaced of jd). (15)

That formulation, rather similar to the classical maximum of entrogy, doesnot lead to simple calculations. Therefore, a simpler approach is pre ered.

4-2- R(k) is replaced by an estimate

Obviously, it is possible to replace R(k) (in(10)) by an estimate. It can bethe discret Fourier transform de ined by :

ns-l

fi(k)= Z r(jd).w(j).exp(211!‘kjd) . (16)
j=-ns+l

(ns — number of sensors).

In formula (16), the lw(i)) represent the array weighting. A usoful weightingis given by the classica triangle function i.e :

inc) - D; - fi - ok (17)

(Dk : steering vector associated to k [5], fi : estimated CSM).

The main drawback of this weighting comes from enlarged lobes but its main
advantage is to ensure ositivy of the estimated fi(k). For most of the prac-
tical cases, formula (17? is qu te satisfying.

The gradient vector calculation is straightforward and described below :

1) Let B be the covariance matrix of a MA model. then [ ]

1 P P
3-02 21“. - 213.14 -oZB, us} . (18)

i=0 i=0

with Yi a rectangular (nsxns+p) matrix defined by :
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aH Damn? + 31"?! De
2) —-—= ———.—— sine do

3bi D°(R—B) D3

Damn: + 391:] 1)6

 

sine d8
‘ tO 90031-31) De

A convenient approximation of the optimal step of the gradient method is of
fundamental importance in practice. Using the matricial formulation of H,

this optimal step may be estimated as t e value of the scalar p maximizing
the expression be ow

n n

H(p) = ZLogu + pi?) + L . Zng(1 - put) . (19)
1—1 i=1

where A: and u: are respectively the eigenvalues of the matrices (fi-Bk)"Dk

and BL‘Dk (Bk : noise matrix at the k-th iteration, Dk gradient matrix).

These eigenvalues are approximated by the samples values of the spatial densi-

ties d(k)/r(k)—b(k) ; d(k)/b(k) (with samples defined by : kmd = m/ms,

1 < m < n5).

.I This approximated step size of the gradient is quite satisfying and ensures a

fast convergence of the method under the positivity constraint (r(k)-b(k) > O)

5. REMARKS ABOUT THE REF

The property 2 shows the interest of our method for noise model estimation.

The fig. 2 i lustrates the behaviour of the methods which consists in seeking

the more random noise model (i.e maximizing Log det B or I?wLog B(k)dk) under

the positivity constraint about R-B.

Actually the pro osed method can be considered as a deconvolution method ;

the aim being the estimation of the noise model seen by an array of known

transfer function.

A arallel can be made with regularization methods of ill posed problem due to

Ti honov which consist in replacing the problem AZ - y by the problem below :

Min £(2) — IIAZ - yu2 +AIIPZIIZ . (20)
z ,
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In the above formula, A is called the regularization parameter and determine
a compromise between regularization and exact data proximity.

In the REF functional, the term Log(R-B) can be seen as a "barrier functio-

nal" which avoids sources description by noise model. The role of the term
L.log(B(k)) is to take into account the uncertaint about B and overall to

ensure the position of the maximum of H (see fig. 2K.

Another practical problem is induced by the choice of the parametric model
order of noise. It may be estimated by several ways 57]. However, the methods

performs very well (Prop. 3 is still satis ie ) when this order is

overdetermined.
  

   
Barrier-

‘,,/’

 

Fig. 2 : Shape of the REF functional (radially).

6. HULTIFREQUENCY ESTIMATION OF THE NOISE MODEL

We assume that the additive noise may be described by a common spatial model
(with different sam ling at each frequency), this hypothesis seems uite ac-

ceptable. We sha 1 evelop now a method taking advantage rom this
hypothesis.

Consider the frequency £0, at that frequency assume that noise may be model-

led by a MA, let be :

B(fo,k)=02|1+b1-Z+...+b -Z"l2p

fD -

Z = exp(-Zifikd) , k - 7? c059 (6 : bearing) (21)

f0 £0

The wavenumber k varying from - 7? to —— . It can be deduced from the noise

model an estimate of the cross spectrum rb(f°,£), let 2

/2d

“(£0.10 — B(fa,k) e'zm" dk . (22)
- 1/2d

and more generally one has (unicity ofthe noise model)
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/2d
rum, .nd) - B(fi,k) e'zm’ dk . (23)

- 1/2d

but 2

swim) -02|l +h12'. + +1:p 2ng

Z. = exp(-21flfi/C d cosB)
I

Now canalso be written as :

f.

Zi - exp(-Zifl fo/C cose Ai) with Xi = d EL
0

so that finally :

rb(fi,nd) — rb(f°,nd fi/fo) . (24)

Under the independency hypothese for Fourier transforms (at different fre—
quency). the mu tifrequency REF takes the following form

2fa
H = 2: [Log(fi(fi,k) - B(fi,k)) + L Log B(fi,k)] dk (25)

fI -fo —W

it is maximized by the previous gradient method.

The basic hypothesis (unique noise model) may be a little restrictive but it
can be easily relaxed by use ofextension models [8].

7. SPATIAL WHITENING

Assuming that a noise model have been estimated, the (numerical) problem con-
sists now in whitening the data.

For that purpose. the classical method consists in Choleski factorization and
matricial inversion of the triangular factors. For large arrays, this method
is drastically costly and can present furthermore some rawbac s.

%n ogder to remedy these problems the following approach seems much more pre-
era e I

1) determine an AR filter equivalent to the MA model
2; the whitening filter is then [A“(z“)]‘1 — A(2‘”
3 compute the whitened spatial covariances :

ru(£) - A RIA' with :

1 aim-at, r(£) r(£-l) . . . . . ..r(2-q)

A- ° 0 , R,-= . (26)

o 01 a1 aq r(£+q) r(2+1) r(£) ‘
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Consider now the effect of that whitening on a source ; let

Rum) a A (D8 03) A‘

the whitening method enjoys the following properties 2

1) rank(RH(e)) = l

2) A De — (1 + a, eim + aq eiq“) D'e . (27)

From (27), we see that whitening as defined by (26) does not modified sources
properties. These formulas suggest also a fastier whitening method. i.e. com-
pute :

no) - (S"<e)) . n9 . ii . be (23)

8. SIMULATION RESULTS

Fig. 3 illustrates the benefits given by the proposed method for beamformin .
The quality of estimation of the noise model is quite satisfyin . After wh -
tening the weak source (100°) is clearly seen, the sidelobe at 1 0‘ complete-
ly canceled. The residual noise (after whitening) is perfectly white.

 

  
  

   

   

 

  Simulaiion : SD caplcurs 300 moycnncs
2 sources : (ii a 45° 110°

oi = 1.0 .05
Bmii MA simuié : 4 coeiiicienls:

1.0 0.5 -O.2 -0.7
ilcr. Bruit cslimé:

1.10 0.33 0.00 ~O.47  

  

 

90
DSP Avanl bianchimcnl
DSP/ipjhs binnciiimnn_l‘

 

beamforming without whitening
"" ' - ' " beamforming after whitening

Fig. 3 : Beamforming after whitening

For this simulation the gradient method converges in about 10 iterations.

Fig. 4 illustrates the interest of multifrequency estimation, especially in
resence of a great number of sources [9 the multifrequency estimation en-

hances considerably the quality of the no se model estimation.
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30 caplouts 300 moyonnes 300 ‘E 1"

to souvcas ,‘l.

Honofrequency estimation I
l

200- '

/' \ f"
t |’

It A I.

/ \ / 100- ‘_ .-,-.
.—' ’ '

* , \

o— 5.. , ,m ‘

° 90 we
Multifrequency estimation

_ Sourco v Bruit
Bruil simulo

» Brull estimé

Fig. A Multifrequency estimation

9. CONCLUSION

A novel method for noise model estimation in presence of sources has been dew

veloped. It uses beamforming outputs as data and is therefore well suited to

large arrys. Its computation cost does not depend on the sensor number.

Furthermore, its robustness w.r.t. physical hypotheses has been proved both

b theoretical considerations and Simulations. A simple extension to multi-

requency analysis has been presented.

The proposed method can be directly applied to beamforming outputs and would

enhance sonar performances with a low computation cost.
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APPENDIX A

The aim of this aB endix is to prove the basic Property 3 of the REF ; with.the notations of (l g one obtains :

an Re (2' Foo) [112(k) - (L+1) B(k)l
abk " [Rm - nan} B(k) dk “‘1’

If no source is present, a direct consequence of Al) is that partial deriva-
- L

tives a/ébiH are nulls when bi is equal to b? E:I (b? exact value of the
parameter). H being a concave functional w.r.t the (bi) one deduces that :

o L
“=1” m fori—l,....P. (A2)

Things are less clear in the presence of sources. Consider now the weighted
sum ofpartial derivatives, 1.e. ‘ -

i

i b ani _
i_1 ab

using (A1) one obtains straightwardly :

 

P 8H S(k) Bu (k) - (L+1)/L 3(k)
2 hi E= L de + L Rut) _‘B(k) dk .

bi ‘ -u -

(1) (2)

'(with R(k) = S(k) + B°(k) ; S(k) signal density).

Let us examine now the respective signs of quantities (l) and (2) of (A3).

The term (1) is positive since S(k) and R(k) — B(k) are positive (whatever k)
by assumption.

Divide now the (bi) domain in h zones, as illustrated below i

 

We shall first Show that the maximum of H cannot be in the zone 21. More pre-
cisely, when the coefficients (bi) satisfy the following inequalities :
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L
a — =lbil s Ibil H1 for 1 1,2,...P. (A4)

one obtains easily that :

P
L 1 L 1

(150(k) - {—Bumdk = 2 Iowa - %b§1 . (A5)
_w i=0

Moreover, one can assume that R(k) - B(k) is greater that a scalar a strictly
positive (otherwise if R(k)-B(k) 4 O on a non zero-measure set, then H ~ -u»,

so that finally :

  

z b. 3-2 L S(k) dk + l [B (k) - (U1) B(k)] dk
. ‘ ab. R(k) — B(k) a 0 L
i=1 1 _u _w

Hence

if bv‘jEL > O on (2 )

1—1 I abi 1

The only one h pothesis which has been used ti11.is the positivity of S(k)l
but actually S(k corresponds to the spatial density of sources,

For instance. assume that only one source is present :

S(k) = —————~——; ; Z : source pole

IZ - ZOI

therefore :

02

(1 . moi?)

S(k)

R(k) ~ B(k)
-u

1
k 2 -

a

If the coefficients (bi) belong the 22 or Z3, the term (2) is not necessarily

positive but is bounded. 0n the other hand, the term (1) is great (2° near

P
a

the unit circle 2 source pole). Therefore the sum :2 bi EB—H is asymptoti-

i-l i
cally positive on 22 and Z3.

If the coefficients (bi) tend towards their exact values, Htends towards - ax

Finally, the maximum is in the zone 2‘ itself determined by the conditions :

lb; - b9! < Ib9| (1 for i = l,2....,p (A6)L)I I ' L+1
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