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1. INTRODUCTION

This paper describes a simple method for calculating the amplitude of the reflected wave, when an
acoustic plane wave impinges on a viscoelastic layer with a very rough surface, as depicted in Figure
1. The method has previously been applied to the scattering of electromagnetic waves

,pinc ‘psc

Figure J. The geometry of the scattering layer.

The method consists of replacing the “interface” region, in which properties vary in the lateral
direction between those of the acoustic medium and the solid layer, by a laterally homogeneous
but vertically stratified medium, with properties at any particular 1 . 'al section chosen as some
suitable average of the two local properties at that section. The validity of this approximation
can be proved, in the asymptotic limit of a very rough interface. Examples demonstrate, however,
that the approximation generates quite accurate results, even for an interface with the degree of
roughness illustrated in the figure. No rigorous proof is available ~ nor can one be expected W but
the practical utility of the simple approximate method is verified by comparison with more precise
(and much more laborious) calculations, based on boundary integral equations, as well as with the
results of experiments.

 

These ideas are explained in the sections that. follow. First, in Section 2, it is shown how the
reflection coefficient for reflection from a vertically stratified medium can be found directly from the
solution of an ordinary differential equation of Ricatti type. Section 3 explains its application to
reflection from the rough layer. Then, Section 4 gives a brief account of the exact formulation, in
terms of boundary integral equations. These require formulae for Green’s functions which can be
expressed in terms of Fourier series. The details are complicated and are relegated to an appendix.
Finally, some results are presented in Section 5.
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2. REFLECTION FROM A VERTICALLY STRATIFIED LAYER

Throughout this work, the incident waves are assumed to have sinusoidal time dependence; thus, all
physical quantities are interpreted as the real parts of corresponding complex quantities, multiplied
by a factor exp(—iwt), which is suppressed. Relative to Cartesian axes 01132213, the layer occupies
the region :1 < 13 < h and the acoustic medium through which the incident and reflected waves
propagate occupies h < :53 < 00. The acoustic medium (inviscid fluid) is characterised by a bulk
modulus N] and density p,, both assumed uniform. The layer has the stress—strain relations

(Try = Cijklekiy

where strain components agj are related to displacement components 11,- by

CH = Hum + "2201

and density m. In these equations, the summation convention applies to repeated sufl'ixes and ‘1-
represents B/élzj. The layer is viscoelastic and the constants cijk‘ are complex and depend upon
the circular frequency w, as well as displaying variation with the coordinate 23; the density p, is
real and independent ofw but depends on $3.

For the present application, the layer will display transversely isotropic symmetry about an axis in
the 11—direction. In such acase, the stress—strain relations can be written in the form

%(622 + 033) = New + £33) +1611,

011:1(822 + 633) + new

022 — 033 = 2771(622 — 833), 0'23 = 27719237

UIQZQPC’IZ: £713 =2P813- (1)

An acoustic wave incident normally'on the layer than generates a displacement, in the layer andyin
the fluid, whose only non-zero component. is u;,, and this is a function of 13 only. It is described by
the following set of equations.
In the fluid (:53 > h):

'1
0&3 + plw'ua = 0; 033 = slug. (2)

In the layer ((1 < 23 < h):

“is + lezua = 0; 033 = (k + mini- (3)

Here, a prime signifies differentiation with respect to $3. In addition, 033 and 11.3 are continuous
at the interface :03 = h, and some “homogeneous” boundary condition is assumed at 1:3 = d. In
general. this can be expressed as an impedance relation

033M) = -in(d)ua(d), (4)

including the possibilities Z(d) : 0 or Z(d) = 00, to allow for zero traction or zero displacement at
$3 =

- A convenient way to formulate this problem is to set

 

033(z3) = —_in(13)u3($3). (5)

Then, in the layer, it follows that

I _ Z? _
Z_1w{k+m pl (6)
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The advantage of the impedance formulation is that, if the layer in fact terminated at height $3,
the coefficient R for reflection of the incident wave back into the fluid would be

_z,—zR—Zfiz. (7)

 

where Z) is the intrinsic impedance of the fluid, Z) = (Ara-fr”. It is still more convenient to
employ R, as given by (7), as the unknown in place of Z: by elementary manipulation, R satisfies
the equation

where Z; = [p109 + m)]1’2. All that is required to solve the problem is to solve the first-order
differential equation (8) (which is of Ricatti type), subject to the given condition at $3 = d. For
this purpose, the simple implicit scheme obtained by replacing R’ by (12,,“ — Rn)/A (where A is
the step length), R2 by RWIR,l and 2R by Rn+1+ R”, has the interesting property that, when the
layer is elastic so that Z, is real, if 1-2n has modulus 1 for some 121 corresponding to perfect reflection,
then Rn has modulus 1 exactly, for all n. Explicitly, the recurrence relation is

‘iwfli

22f

  

R’:

  

l

l”
Rn+l =

The formulation given above can be generalised fairly easily to the case of a wave incident at any
angle, and to a layer whose constants cijkl have no particular symmetry. Limitations of space
prevent its presentation.

3. APPLICATION TO THE ROUGH LAYER

Suppose that the interface between the layer and the fluid is very rough, as depicted in Figure 2.

ll ll ii. ii ii iii
lllll lllll lllll lllll llll lll

Figure ‘2. A very rough interface and its local approximation as a laminate.

At any particular section, specified by a value of 13, it appears locally to have the form ofa laminated
medium, with the volume fraction of the material comprising the layer taking a value 1/(w3), say. So
long as the waves in the layer have wavelength much larger than the separation of adjacent peaks,
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the region in the vicinity of the section at height 3:3 can be approximated as homogeneous, with
constants appropriate to those of a laminate with volume fraction of layer material 11(13). The
formulae are well-known: see, for example, Locally, the “laminate” must be in equilibrium. The
three stress components on, 012 and 013, and the three strain components 622, £33 and egg cannot
depend on 11 and so must equal their mean values in the section at height 13. In detail, in the case
that the materials comprising the laminate are isotropic, with Lamé constants A, u, rearrangement
of the stress—strain relations yields

  

%(022+U33) = Wuewmw “A, (an).
022 - U33 = 2140922) — (333)), (723 = 2/4323),

EH = A+l2fll(011)— I‘((522)+ (633)”:

613 #1230713), €12 = Elihu)- ' (10)

Here, the angled brackets denote the average of the quantity enclosed, over the section at height
13. Equations (10) can now be so averaged and rearranged to provide relations between the mean
values ofstress and strain, of the form of equations (1), with

     

_ (3z\+2/L)p 1 _ A _ 1 _ .\k—<—,+,,, >+<,+.2,,> ‘<,+,,,>2. I—<,+,,,> ‘<,+,,,>.
n=<,+1,,,>-'. m=(#). p=(%)"- (u)

The effective density of the laminate is obtained by averaging the momentum density; continuity of
the velocity induces the simple result that the effective density is just the mean density,

These formulae apply when all components of the laminate are solid, and are not restricted to a
~two—compone-nt laminate. If, however, one of the components is a fluid, for which [1 : 0, it follows
from (11) that p = 0, so that the laminate cannot support relative shear of its planes of symmetry.
The “next term” in the series therefore becomes significant: this would involve the construction of
a higher-order theory, allowing for bending stiffness of the solid laminae. For the case/of normal
incidence, discussed in Section 2, this problem does not arise: the relevant parameter is k + m,
and this is provided by equations (11). It is perhaps worth noting that, although the solid/fluid
laminate presents an interesting theoretical challenge, the troughs in the structure would be likely
to be filled in with some solid material, in any practical application.

It may be noted that equations (11) retain validity, regardless of the detailed structure of the
laminate. No restriction to periodicity is implied, and the approximate formulation of the reflection
problem thus applies to any rough surface.

4. EXACT FORMULATION

Although the approximate formulation developed above applies to any sufficiently rough surface,
an exact description requires the selection of some particular form. Here, equations are presented
for a surface with periodic structure, such as depicted in Figure 1. To be specific, the bottom

’ surface ofthe layer is taken to be the plane I3 = d, while the top surface is defined by the equation
as = F(zl), where F is a periodic function with period L.

In the case of normal incidence, all of the fields will have period L and so can be represented as
Fourier series. In the case of the fluid, the acoustic wave can be described in terms of a velocity
potential :1), which may be split into incident and scattered components:

¢ = ¢inc + ¢scl
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The incident wave has the form I
49"“ = Aexp(—ilr12:3), (l3)

1/2. The scattered wave varies also with :51, sowhere k] = w(p,/n,)

qs" = Z a, exp{—[27ri‘n:l +(41r2n2 _ firm/2mm}, (14)
1i=—oo

the square root being chosen so that it is either positive real or negative imaginary, to correspond
either to evanescent or to upward—travelling waves. The form (14) ensures that 4)“ satisfies the
reduced wave equation

V36“ + fiat“ = 0. (1.5)

There is only one upward—travelling wave (with n = 0), so long as le < 21f; in this case, it is
legitimate to discuss a single reflection coefficient, R = (Lo/A. The simple theory outlined above can
be expected to apply at most to this frequency range — and it is optimistic to expect it to provide
a good representation except for some low—frequency part of this.

The field <15“ can be expressed at a general point, in terms of the pressure and velocity at the
interface :3 = F(z1), by introducing a. Green‘s function G), which is periodic with period L with
respect to :51 and satisfies

V26?! + kaGf = 6(z1— Ill)6(fil‘3 — IS); —L/2 < 11,1; < L/2. (16)

Elementary calculation, based on the divergence theorem, yields

¢s°(z'l,z'3) = /[GJV¢.n — ¢VGl.n]ds, (17)
C

whereC represents the curve {:3 : F(1‘1); —L/2 < 21 < L/2}, n is its unit normal, with components

(—F’(zl),1)/(1 + Fm)”2 and s is arc length along the. curve. The argument follows exactly that
given in [1] for the case of electromagnetic waves. it should be noted that the particle velocity in
the fluid is v = W7), and the pressure is p = iwppfi.

 

A similar integral representation can be developed for the displacement u in the layer. This satisfies
the equations

 

    

    
  
    

 

     

    
  

(I) + Mlujai + Wm + lez’ui = 0, (18)
and the corresponding Green’s tensor (which is periodic with period L with respect to :1) satisfies

(A + MGWJ; + pGiM'j + Prszgp + 6gp6(:c1 — I’l)6(1§3 — 1’3) = 0; —L/2 < 11,1: < L/2. (19)

The representation is

“p(-’Ei71'a) =/C[Gip0ijnj ~ uizijpnjldsa (20)

where a” are the stresses associated with m:

Uij = Afiijuch +I1iue,j+ Mgr)

and 2.5,, are similarly associated with 0,1,, It is important to note that 0,, must also satisfy the
relevant homogeneous boundary condition at the bottom of the layer, 0:3 : d.

The continuity conditions at the interface $1 = F(1:3) are:

~iwu.n = V¢.n,

 

  
  

 

   

Us'jninj = ‘1’;

agjlinj = 0,
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where 1 denotes the unit tangent vector with components (1,F’(zl))/(1 + F’2)1/2.

It is convenient to define
it = u.n and v = u.l,

so that u,- = 1m,- + 111,. The representations (18) and (20) may now be expressed in terms of the ‘
interface quantities p, u and 11: ‘

¢sc(:;,.~.g) = / [aucj + vacpnps, , (22)
C WPf , i

UP(I,1,.T§) = /C [—pngGip — ’MTLI‘EUPTLJ' — vl,E,,,,n,-]ds. I (23)

Integral equations for p, u and u now follow by letting (z’hzg) tend to C ‘from above'in (22) and
‘from below’ in (23). Since

P =iwp1[¢“ + AexP(—ik;zs)l.
equation (2'2) implies

p(z',,zg) — iwplA exp(—ikf1:3) = / [—pVG/m + wzpqu'st. (24)
c

Similarly, (23) yields

 

u(z'l,zg) : —n;, /C [pn,-G.-,, + uninjEU-p + vl,n_,E,-jp]ds ' (25)

and

v(:c’1,:c'3) = [pm-Gm + uninjEU-p + vlinjEU-phs, . (26)
C

where l' and n’ are evaluated at (2’1, F(z’1).

There is no great originality in the formulation, or solution, of these integral equations. Similar
equations have been developed in [3], for example. The greatest difficulty relates to the computation
of the Green’s functions; here, the present account perhaps displays some slight novelty. The
expressions from which the Greens functions were computed are given in the Appendix.

5. RESULTS

It has been remarked above that the simple approximate formulation of Sections 2 and 3 can be
expected to work well, when the period of the surface undulations is sufficiently small. Thus it is
required that ka << 1 but there is no restriction on wavelength relative to layer thickness, k;(h—d).
Figures 3, 4 and 5 display results that substantiate this: the surface undulations are as shown in
the insets. They violate the asymptotic assumption illustrated in Figure 2, and yet the comparison
between the approximation and the more exact solution, obtained by solving numerically the integral
equations, demonstrates the practical utility ofthe simple approximation. Figure 3 shows results for
a layer on a rigid foundation, so that the displacements are zero when 9:3 = d. The mean thickness
of the layer is 1cm, the period is 1cm and the vertical distance between peaks and troughs is 1cm.
The constants /\ and u were taken to be

   
    

 

   

/\ = 186.667 — 69.0933i,

 

u = 20.0 — 82.6i(MPa),

independent of frequency, and p, = 1800 Kgm'a. The fluid was taken as water (Rf = 2250 MPa,

Pf = 1000 Kgm‘a). Figure 4 shows a similar comparison. The parameters are the same but the
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lower surface of the layer is traction-free. The curves show echo reduction (in dB) against frequency
(in KHz). Figure 5 gives the same comparison, when the layer is backed by fluid. The values of A,
p and p, were taken as above but the geometry of the layer is as shown in the inset; the dimensions
correspond to an experimental setup reported in
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Figure 3. Comparison of simple approximation (solid curve) with solution of the integral equation
(discrete points) for a layer with the geometry illustrated, in the case of rigid backing.

10..
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Figure 4. As for Figure 3, except that the back of the layer is traction—free.
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10 4 0.03175 cm

  

‘r
25
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Figure 5. As for Figures 3 and 4, except that the dimensions of the layer are as illustrated, and the
layer is baked with fluid
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Figure 6. Prediction from the simple approximation, with physical parameters chosen to match
experimental data.
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The integral equations become increasingly difficult to solve as frequency increases, due to the need
for a discretization fine enoughto resolve not only the detail of the interface but also the variation
of the field within a wavelength. This dictated the range of frequencies over which the comparison
was made. Figure 6 shows, finally, a prediction, over a somewhat greater frequency range, made just
from the simple approximation. The geometry is exactly as for Figure 5, but this time, frequency-
dependent values were incorporated for /\ and It, to match an experiment reported in The figure
bears a striking resemblance ( considering the experimental variation in the results for different
orientations of the layer in the water tank) to Figure [6] in reference

6. APPENDIX: GREEN’S FUNCTIONS

6.1 The acoustic Green’s function
Since G! is periodic and so is associated with a periodic array of sources, it can be given in the
form 01(11 — 11,13 — 2'3), where G,(zl,z3) satisfies

v20! + Isia, = mama); —L/2 < 11 < L/2.

Furthermore, it has a Fourier series representation

00

Gf(a:1,x3)= Z g,.(.7:3)exp(—21rinx1/L), (A1)
71: —00

where g"(2:3) satisfies the ordinary differential equation

9:: + (It? — 41r2nZ/L2)gn = %6(z3).

Hence,
_exp[—(41r2n2 — k}L2)1/2|13|/L]

(A?)2017an2 — kin)”2gills) =

The resulting explicit series for G] is, unfortunately, slowly convergent when $3 = 0. This reflects
the fact that G,- has a logarithmic singularity at each of the points (nL,0), which is the same as
that in the corresponding static Green’s function GB, which satisfies

V305 = moms). (A3)

Equation (A3) has a solution in closed form:

1 _ 7rz
0411,23) : Elle {In [sm } , (A4)

where z = $1+ix34

A Fourier series for G, may also be constructed. it can be found from that for G'f by taking k] = 0,
except for the term with n = 0, which can be found by considering the asymptotic form of (A4) as
13 —> 00. Finally, by adding and subtracting the two representations for 0,, equation (A1) can be

given in the explicit form

Gi(:€1,za) = iRebn [sin (sin Izal + 2iflln2+m

 

L _ 3L“ 2ik,L

+ i 9XP['(27""|’331/L)l _ exPi-(47rzn2 - kiL2)'/2lrsl/Ll ms (27mm)
"=1 27m (47r2n2 — k7‘2',L2)1/2 L I

(A5)
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The series in (A5) converges absolutely for all 23. Corresponding series for the derivatives of G, '
with respect to 21 or 23 are obtained by differentiating (A5).

6.2 Green’s functions for the layer
The construction of G”, follows, in principle, the pattern established above in calculating Gf. The
details, however, are more complicated; only the results are recorded here.

6.2.1 The semi-infinite layer. Consider first the case d —» —00, for which the boundary condition
is replaced by the requirement that Ggp contains only down-going waves as $3 5’ —oo. The series
expression, analogous to (A1), is

  

Ggp($1,13)= % j: gip(21rn/L,:r3)exp(—21rinzl/L), ‘ (A6)

where

glam) = — [of/HZ — £2)‘”2exp[i(w2/fl2 — {Zr/2mm
— (of/a2 — Er”? expW/az —:2)1/2izsli],

gums) = 93105.23) = 2 [expliW/flz — {Zr/aim} — expiiin/a’ — E2)1”|Is|]]sgn(za),
i exp[i(w2/fl2 —€2)l/2l13ll l

 

933mg) = 2" (“Z/[32 _ PM W2 («fl/fl? shmexpfith/fl? —«52)1/2|zsll

— (wz/az — :2)‘”exp[i(w2/a’ — Ernlmsnl, v
' ‘ (A7)

with ‘

a2 = (A + mil/pi» (12 = it/pi- (A8)

The series (A7) converges slowly when 3:3 = 0. Again, it is appropriate to add and subtract
representations for the static Green’s function, Gfip. In closed form,

2% = Mann [sin (E)]}+Mm {cot (%)}~‘27r(,\ + 2p.) L up + 2p)

5 _ 130+!” E2nG13 — 2L(/\+2#)Re{cot(14)},

(A+3u) , 7rz 23(A+p) ' 1rzs _ __ _ _— _
2“G33 — 27r(,\ + 2mm {1” ls'“ ( L 2L(A + 2y) 1”” {wt ( L ' (A9)

The coefficients in the corresponding series are given by I

lg? (E 23)] = ___expl‘l5ll$3l) Alf ‘ (A + “)lzal J—Li“film (A10)0’ ’ 47r(A+2u) Qfifl+0+uflxsl

if E 96 O, and

Jan—=1 o (A+3 )(ln2)L 1 o5.0, = 2” +—"__[ All[g‘Pl “ll [ 0 —T|—l—2gym] and + 2n) 0 1 ( l

10 Proc. l.O.A. Vol 15 Part 6 (1993)

  



 

Proceedings of the Institute of Acoustics

REFLECTION FROM AN UNDULA’I‘ING SURFACE

(Here, the matrices have entries with suffixes (11), (13), (31) and (33)). The required representation
for G”, is now

00
, 1 . 21m 2

(Indium) = 62,031,153) + Z Z €XP(—27“"$l/L) {flip (T133) — gip( In,13)} - (A12)
n=—r.\3

 

6.2.2 Layer of finite thickness. Green’s function for a finite layer is obtained from Green‘s function
for a semi—infinite layer by adding to it, an ‘image’ field, which satisfies equations (19) without the
delta—function source and contains only up-going 0r evanescent waves as .773 —» +00, such that the
total field satisfies the prescribed boundary conditions at .13 = (1. Translation invariance with respect
to 1'] implies that Green’s function for a point force at takes the form Gip(a:1 — z’l,x3,r’3);
it is possible, therfore, to take I; = 0 without loss. ’l‘hen, Green’s function can be given in the form

1 00

G;p(1‘1,23,2§)= I Z gip(‘21rn/L,:ng,zf,)exp(—27rnz1/L), (A13)

where .
§5p(€1$3111’1): gip(£!1"3 _ + Uigligarasé)

and gip are given by (A7). Satisfaction of the homogeneous equations corresponding to (19), and
the condition for up-going waves, is achieved by taking

aim, 23, ma) = —:Ap expo-n — (01+ krlflp exptiwzs — (1)],
93p“: 7531 = kuAp expilkuimfi _ (1)] + Eur expllkfl($3 _ d)]1 (A15)

where i
k" : (wit/“2 _ 62)”! and k/1:(w'2/BZ _E'J)1/'2'

The constants AP, 3,, depend on the boundary conditions.

For zero displacements at x3 = (l:

1 I I I
Ap = —kakfi+ £3 [églp(£7ll_ 1:5l— k/iflnp(£a’l' i

‘1 I I
Bp = [ca/cg +52 [k-wglpiéwd _ 173) +£93p(£ad_ (A17)

For zero tractions at 13 = d:

[AP]_L[ Mia-I, M’s—Eh
Bp _ A — [A62 + (A + 2101.13 2Ekn

. _(glp,3 _ iEinp) ] . _

‘ l—Megw + (A + 2mm 1 (A18)
where

A = 452%,“ + (In?j — £2)[/\£3 + (A + mtg]. (A19)

If the layer is backed by fluid, the constants AP, Bp have to be chosen so that the correct continuity
conditions are satisfied at $3 = (1: these are that the shear traction is zero, while normal traction

Proc. I.O.A. Vol 15 Part 6 (1993) 11
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and velocity are continuous with those in the fluid occupying I3 < d, into which a downgoing wave
of the general form (A1) is transmitted. Completion of the algebra leads to

[A7,] = _i_[ Qltéka +WZEPf/k1 16% - 52] X
B A —[W + (A + 2:41:23 +w2P/ka/kll 25kgp

_(glr.3i — ifflflp) I J. A o , A2
X i—lAEylp + (A + 2ll")!/:sp.:s + liw'l’j/ijIsp ( 0)

where

A = 2§zka(?#ka + wzl’l/kf) + (lei, — 6") [A52 + (A + 2m: + maple/1w]. (A21)

These expressions reduce to (A18), (A19) when pf = 0.

The series for the ‘image’ part of the Green’s function converges absolutely, when it is evaluated at
any point of the upper interface :3 = F(rl); there is no need to speed its convergence as was done
for the ‘semi—infinite layer’ part, given by (.412).
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