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INTRODUCTION

The aim of this paper is to increase awareness of some recent developments

in visual perception modelling, and to discuss some implications for speech

applications.

All modern speech recognition machines are based on variations of the same

methods for representing speech knowledge and for searching for interpretations

that are consistent with the data and the knowledge. These methods (Markov

models and dynamic programming) provide: a basis for encoding speech knowledge

in a structure with many levels of representation (e.g. spectra, phonetic

segmentsI words, noun phrases..); a well-defined measure of the agreement of

any particular interpretation with the data and the knowledge; and a very

efficient method of searching for good interpretations.

There is great scope for development of these methods, and it is important

that this development should go ahead. However, there is also good reason to

look for alternatives. The main algorithms of the standard method are dynamic

programming and the related 'forward-backward algorithm'. Both rely on the

'Markov property': this means that the speech model can have little memory of

its past outputs. and consequently it is very diffidult or impossible to include

in the structure of such models many of the rich interdependencies between

different parts of the pattern that many people assume are needed.

These limitations have caused some speech scientists to turn to "artificial

intelligence" style symbolic reasoning methods for knowledge representation and

for searching for good interpretations. He find this approach unconvincing for

the following reasons. Speech signals are not symbolic, and any attempt to

force a segmentation and labelling on the data before all knowledge sources have

been applied is bound to be unsatisfactory. The symbolic methods of linguistics

and current artificial intelligence should be useful for describing and

designing natural and artificial perception systems, but at a level of

description considerably 'above' the implementation method. The human speech

perception processl which is the target of all natural speech, is unlikely to be

based on symbolic reasoning. Rather, we prefer Hinton's vision of perception as

"a parallel, distributed computation in which a large network settles into a

particular state“ under the influence of the sensory input [1].

This paper presents an introduction, for the speech technology research

community, to the concepts of adaptive stachastic constraint satiafaction

networks and "optimisation by simulated annealing". We indicate how these

methods might be applied at various levels of speech pattern processing. and

illustrate with some very simple networks. The next section is a very quick

overview of the main ideas, some of which are re-introduced more gently later

on. We strongly recommend reference [2].
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BOLTZMANN MACHINE OVERVIEW

In a series of eloquent and persuasive papers [Z,3,A] Hinton, Sejnowski and
others have recently presented a‘ method for representing 'knowledge' in the
pattern and strengths of the connections of a 'constraint satisfaction network'
(CSN) composed of very simple units which can each be in either an ‘on' state or
an 'off' state. The input 'sensory‘ data constrains the state of some units of
such a network.

An 'interpretation' of the data is a global state of the network (a pattern
of 0N and OFF states of the units). Each global state of the network can be
assigned a single number called the ‘energy' of that state. The energy can be
interpreted as a measure of the 'implausibility' of the interpretation, given
the data and the knowledge represented by the network.

The search for good (low energy) global states is done by a relaxation
algorithm. A unit is selected (randomly) and the difference in the global
energy is computed for the two possible states of that unit, given the current
states of the other units. A simple relaxation algorithm would set the unit to
the state for which the global energy is lower, but this procedure tends to get
stuck in local minima. The solution is to make the decision probabalistic:
uphill steps are then possible, and the system can find its way out of local
minima. There are several ways ofmaking the decision probsbalistic. One
method is to compute the difference in energy for the two possible states, add a
random number from a Gaussian distribution, and compare with zero. We shall
refer to this random number as ‘noise'.

The amplitude of the noise is analogous to the temperature of a physical
system of interacting particles. The recommended method for reliably finding
good minima in a limited time is to start the system at a high temperature and
reduce the temperature carefully. This technique is known as 'optimisation by
simulated annealing' [5], and its applications are much wider than presented
here. It has already been used successfully in the automatic design of layout
and wiring for integrated circuits [5].

As in statistical mechanics, the probability of finding the system in a
particular global state is related to the energy of that state, and this
relationship is governed by the Boltzmann distribution. It turns out that the
mathematical properties of the Boltzmann distribution permit analysis of the
statistics of the search process, and lead to a method of adapting the strengths
of interconnections (weights) so that the behaviour of the network can capture
the essential properties of classes of 'training' patterns. Such an adaptive
constraint satisfaction network is refered to as a 'Boltzmann machine' (BM) [2].

In this paper we concentrate on examples of very simple CSN's and BM's
which seem to us to be relevant to speech. Some details of the BH algorithms
are introduced where appropriate, but we do not .attempt to improve on the
excellent presentation of Hinton et.al. We do nat'deal with weight adaptation,
although this is seen as essential for tuning nM's in any practical application.
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A SIMPLE CONSTRAINT SATISFACTION NETWORK

In this section we illustrate some properties of RSNs and the noisy

relaxation search. using an extremely simple example which should not be taken

too seriously.

Fig.1 shows how a few terms familiar in phonetics might be related in a

CSN. Connections with arrows are positive weights, (reinforcing, excitatory)

which tend to make both units come on together. Connections with blobs are

negative weights, (inhibitory) which tend to suppress one unit if the other is
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Fig.1: A very simple constraint satisfaction network [7:92; Energies for some gobs] states

The network could be thought of as expressing logical relationships, such

as: an /s/ is a stop. something cannot be both velar and alveolar. etc.

However, the global evaluation principle simply scores different configurations

as more or less plausible. The energy is minus the~sum of the weights on

connections joining two units that are both 'on'. Each unit has a bias, which

can be thought of as a weight joining it to a permanently ‘on' unit.

Fig.2 shows the energies for some representative global states, for the

case that all weights are +2 or -Z. and the biases are -l. The minimum energy

states correspond to complete statements that are acceptable (Za-c). Slightly

higher energy states correspond to partial or somewhat conflicting

'interpretations' (Zd-f), while ridiculous states have high energy (lg-i).

Left to itself at some non—zero temperature, the noisy relaxation algorithm

will spend most time in ‘meaningful' states, but will move from one to another

at random. (The mean time between movements will be controlled by the

temperature and the height of the potential barriers between low energy states.)

If we constrain the states of some of the units, the relaxation algorithm

will attempt to complete the pattern. For instance, if we turn on STOP and ALV.

the minimum energy configuration is Fig.2b. If we turn on P then STOP and BILAB
will tend to turn on. If we just turn on ALV, then the system will alternate

between 2b and 2c. -
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The units of a BM are in an 'on' state or an 'off' state at any particular
time, and in general the proportion of time spent in the on state in equilibrium
represents the system's confidence in the elementary hypothesis that the the
unit deals with. One method of applying an input pattern to a BM is simply to
'clamp' the states of some of the units, which are then in effect regarded as
input connections.

CONTINUITY 0F INPUT VALUES

In the above example, the input patterns are essentially binary. However,
in most speech recognition systems the raw pattern data is an array of values
such as spectrum amplitudes, which in principle take continuous values. In this
situation there are several options for applying such values to a more practical
EN.

The speech pattern values could be 'binarised' in some way, and applied
directly to an input layer of the network. Hinton suggests that values be
represented by sets of units, each covering a range of values.

The continuous-valued inputs could also be applied as biases, direct to the
'sensory units'. These units will then act as noisy, context sensitve,
threshold units, and for small input values relative to the noise standard
deviation, will encode the input value as a probability.

It is possible to treat a continuous input value as if it were the
probability of a (fictional) unit being 'on'. In this case the search and the
weight adaptation involve a little more arithmetic, but the same formulae can be
used. This 'fictional input unit' technique can lead to an arrangement in which
a real unit forms a weighted sum of individual measurements. In the case of a
time-spread array, this is equivalent to an FIR filter, and the resulting weight
adaptation method is closely related to that used in adaptive equalisers.

Another possibility is that the input data could use a more complex binary
code, in which correlations between 'spectral' channels would be important.
There is some evidence that auditory nerve data encoding has such a property.

CONTINUITY AND UNIFORMITY OF TIME

Boltzmann machines were devised primarily for processing static visual
imagea, including stereo pairs. Speech patterns, on the other hand, are
essentially functions of time, and any method of dealing with speech patterns
should explicitly account for temporal behaviour. Markov models include time in
their formulation, but it is not obvious how to include time in a BM. Hinton
argues strongly against the natural temptation to use the dynamics of the
relaxation process to handle time-varying input.

For dealing with acoustic patterns, it is perhaps most useful to treat time
as another dimension of the pattern (like frequency) and spend out our data and
our network across each such dimension. CSN'a that apply to an instant of time
(eg Fig.1) are repeated regularly along the time axis, and knowledge about
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relationships between one moment in time and thr next is encoded in connections
which join units at different time locations. We consider that it is very
important for the network to be homogeneous with respect tr time, so that the

behaviour of the network will be independent of time (except for the influence

of the input). This also means that the number of different weights may be much

smaller than the number of different units.

For simple time—spread networks, the connection: and weights are all

repeated at each time instant, and all we need to know about the network is the

spacing along the time axis, and the connections and weights for units in a

single time-slice. More complex networks will need different time—spacings for

units dealing with different levels of representation.

A similar procedure may be appropriate for the frequency axis, but the
weights will probably need to be functions of frequency, perhaps expressible in

terms of the first few coefficients of a frequency-axis basis function set such

as that used in the cosine transform.

A VERY SIMPLE SPREAD NETWORK EXAMPLE

Fig.3 shows a very simple, one—dimensional, regular network, with the same

pattern and values of weights for every one of the units. Each unit receives an

input via a weight of value a, has a lateral connection of value c to each of

its immediate neighbours, and has a bias b. We can imagine that, with
appropriate values for a,b and c, a network like this might he used to pick
peaks in a spectrum cross-section, or respond to interesting features of a

shurt-term—powerrversus—time profile. More interesting behaviour would be

possible with a more general version, with lateral connections to more than the

adjacent units, input connections to more than the local input value, and

connections to 'higher-level' units of various kinds.

The energy of a global state of the network of fig.3 is

E - — E 5(1).[Ms.d(1)+c.(s(1-1)+s(1+t))/2]

1.

where d(i) is the ith input value and s(i) is the state (0 or 1) of the ith

unit.

The local decision rule is

If F + N(0,T1>0 then set 5(1):} else set s(i)-0

where F ' b+a.d(i)+c.s(1-1)+c.s(i+l)

and N(m,s) is a sample from a Gaussian distribution of mean m and standard

deviation 5.

Let us assume that a and c are positive and h is negative, as implied by
the arrowheads and blobs. The local decision function is a noisy,
context-sensitive threshold. The threshold, which is -b if the neighbours are

off, reduces to -h-c with one neighbour on, and -b-2c if both neighbours are on.
the result is that isolated input values of less than ~b will not lead to stable
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Fig3. Pyramidal neurons in the Figb. Lateral excitation
cortex. function between neurons

in the array.

The operation of this type of neural array when exposed to input
pattern vectors via the afferent fibres is largely speculative but
if just a few apparently reasonable assumptions are made then the
array is found to have powerful feature extraction properties.

The first assumption is that when an input vector is applied to the
array each neuron will tend to be excited in proportion to the
closeness of its synaptic weight vector to the input pattern
vector.i.e Assuming the neurons to be weighted input summing
amplifiers, the neuron output will be the scalar product of the
input vector and that neuron's synaptic weight vector. The second
assumption is that the outputs of each neuron are non-linearly
scaled such that the output of just one neuron will dominate in a
particular locality. The final assumption is that the synaptic
weight vectors of each neuron are moved towards or away from the
input pattern vector depending on whether the overall excitation of
that neuron is positive or negative after all the effects of lateral
excitation and inhibition are taken into account.

With these assumptions 5 simple computational algorithm for the
neural array can be formulated as follows:

1) Set up a two dimensional array of e1ements(neurons),each
with storage for an initially random synaptic weight vector order k.

4 2) Take an input pattern vector of order k and find the
neuroh with the closest stored synaptic weight vector.

3) Define an excitory and inhibitory neighbourhood around i
that neuron in the array and modify the synaptic Height vectors of
each neuron in the neighbourhood such that they move towards or away
from the input pattern vector depending on whether it lies in an
excitory or inhibitory part of the neighbourhood.

325 Proc.l.0.A. Volfi Pond (1984}
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i.e Wn - Wn + Kn * ( X - Un ) .............1

Where Mn is the weight vector of the nth neuron in the array .X is

the input vector and Kn is the factor determined from the "mexican

hat" lateral excitation function.

Properties of the Neural Array Model:

The properties of the neural array model are most easily

demonstrated by generating an artificial data set of random two

dimensional vectors having a uniform probability distribution at

any radius from the centre of their pattern space and a Gaussian

distribution along a radius. The scatter plot of such points is

shown in figure 5. If vectors are drawn at random from this

distribution and applied to a one dimensional neural array it is

found that the synaptic weight vectors associated with each neuron

start to cluster along the ridge of the data's probability

distribution. More startling, neurons which are adjacent to each

other in the array take on synaptic weight values which are adjacent

in the pattern space. In other words ,the array becomes

topologically related to the data as is shown in figure 6. and the

data is projected through a complex non-linear transform onto the

array. N “goon
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F135. Scatter plot of 2-D Figé. l-D neural array and its
data. associated synaptic weight

vector after exposure to the
data of Figs.

In general data which is embedded in a very high dimensional space

can be projected onto a neural array of low dimensionality as long

as the inherent dimensionality of the data is not greater than the

dimensionality of the array.This is feature extraction. If the
inherent dimensionality of the data exceeds that of the array then

the array will fold itself so as to fill the subspace occupied by

the data. Of course, when this happens ,the topological ordering of

the map is disturbed. However,this in itself is a useful property,
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because it means that the inherent dimensionality of a set of data
can be determined by increasing the dimensionality of the array
onto which it is projected until the array is seen to be {
topologically ordered.

Neural Arrays and Speech Recognition: '

A two dimensional neural array has been nSed by Kohonen (1) for the
recognition of Finnish phonemes described in a pattern space of
thirty DFT coefficients .Such a system could form the basis of a
speech recogniser. However it is perhaps more interesting at this
stage to use the array as a tool for investigating the properties of
speech sounds. To this end a high speed hardware neural array model
has been built at BTRL .In the long term it is intended to expose
the array directly to sequences of time domain samples of speech to
see if speaker independent features can be found which do not depend
on spectral analysis. However,in the short term an attempt is being

made to set a bench mark by applying spectral coefficients of speech
to the array in the following experiments:

 

Single Speaker Clusters:

A phrase from a single speaker. "Why were you away a year Roy?“ will
be segmented into blocks of 256 samples and spectrally analyzed to
yield sixteen spectral coefficients equally spaced in frequency.
Each of the 16 dimensional vectors will be applied many times in
random order to a 20‘20 neural array such that the total number of
“training passes " is 20000. The values of the synaptic weight
vectors in the array will then be analyzed to see if the array
is topologically ordered and also to measure the proximity of
adjacent neuron's synaptic weight vectors over the entire array.This
should give a measure of cluster density and cluster separation in
the original 16 dimensional pattern space. It is of course expected
that the clusters will correspond to particular speech primitives.
The cluster density and separation should indicate how reliably a
tecogniser working on these types of spectral analysis could
operate.

Multi Speaker Clustering :

The same experiment will be repeated except that the speech will be
taken from several different speakers. The values taken on by the
neural array will be analyzed to see if discernible clusters still
exist and if so, how their separation has changed.

All the previous tests will be repeated for spectral analysis block
lengths ranging from fine to 32ms and using an enlarged speech test
set containing nasals and fricatives as well as vowel sounds.
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Inherent Dimensionality of Speech:

In this experiment arrays of various dimensionalities will be
exposed to the sets of spectral coefficients and the minimum array
dimensionality required for a topologically ordered map determined.
This test would provide an interesting piece of circumstantial
evidence for or against the speculative idea that the ear produces
spectral features which are initially projected onto a two
dimensional neural array.

Hardware for Neural Array Model:

In order to train the neural array ,it must be exposed to very large
numbers of input patterns .For each input the neuron with the
nearest synaptic weight vector must be found and then all the neuron
vectors in the array updated using equation(l). This is a
computationally time consuming task when done in software on a mini
computer and so a the neural array has been implemented in hardware
form under the control of a micro computer.

The hardware consists of thirty identical rack mounted cards each
communicating with the controlling micro computer via a common
bus.Each card consists of 32kbytes of memory to store synaptic
weight vectors and their corresponding difference vectors (Xn — Wn)
along with logic to determine the position of the neuron in the
array with the smallest difference vector and logic to update all
neuron values in the array according to equation (1). The definition
of the lateral exctitation function is software controlled.

The total memory capacity available for storing synaptic weight
vectors is 240 kbytes and this can be partitioned under control of
the microcomputer between array size and vector order. For example
,a 32*32 array could be set up which could deal with input vectors
of order 20A8.

Observations from using a Neural Array:

3) Nearest Neuron Metric:

Computationally ,the simplest metric for finding which synaptic
weight vector is nearest to the current input vector is "city
block". This metric does not actually match the Euclidean space in
which we wish to generate the array map,but it has been found that
the measure will enable the array to become roughly ordered. At this
stage the vector distances are so small that there is very little
difference between Euclidean distance and city block distance. and
the system will continue to full convergence.

b) Neighbourhood Metric:

Proc.l.O.A. Vols hn4 (1984) 329
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Since it is required that the map be topologically ordered, the
metric which is used to determine the neighbourhood of neurons which
are updated must be consistent with the spatial distances between
neurons in the physical array. Thus if the array is rectangular. a
Euclidean metric should be used. If the array is based upon a
diamond shape .then the city block metric should operate.

c)Neighbourhood as a Function of Time:

At the start of training the neighbourhood must be set wide in order
that topological ordering can occur. However,if it is not reduced as
time progresses it is difficult for the synaptic weight vectors to
converge to values which accurately mirror the statistics of the
input patterns .A typical result is that all the synaptic weight
vectors are pulled towards the average of all the pattern vectors to
which the system has been exposed. The result is a shrunken map. The
solution is to linearly decrease the neighbourhood size as training
progresses.

d) Lateral Excitation Function:

 

The original software simulations of the system done at BTRL showed
that very low levels of inhibition aided rapid ordering of the array
and also gave convergence without reducing the neighbourhood size.
The necessary ratio between excitation and inhibition values being
about 100 to 1 while the excitory neighbourhood size was about one
eigth of the pattern space dimension and the inhibitory
neighbourhood about one half. However .it has been found that when
using 8 bit integer arithmetic in the hardware .inhibition leads to
instability and has therefore been abandoned. 4

It has also been found that a computational simplification can be
made at the cost of increased ordering time: The expression for
updating the neuron values (equation (1)) can be modified so that
the synaptic weight vector is moved by an incremental amount away or
towards the current input vector.

Wn u Wn + (x - Wn)/|X - Wnl..........2

In the computation this is implemented merely by adding the sign of
the difference between the ith element of X and the ith element of
Wn to the value of the ith element of Wn.

Acknowledgement is made to the Director of British Telecom Research
Laboratories for permission to publish this paper.
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