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1 . Introduct ion

A general and comprehensive description of the role of nonlinear analysis in
structural dynamics has been given recently by Barr [1]. It in clear that the
dynwicist must (reluctantly) include nonlinearities in his predictive models
of structural behaviour to account for a wide range of cotylex response
phenomena, which cannot be explained on the basis of linear s stem responSe.
'ith the retention of quadratic nonlinear terms system ecuctio a may he seen to
admit the possibilities of internal resonance when. if sinple coincidental
relationships exist between the undanped natural modal frequencies complex
scattering of vibrational energ‘ may result duringforced or notional
excitation and modes having natural frequencies rezote fror. the excitation
frequency nay respond significantly.

 

There is no attempt in the present paper to extend the general analysis of

such systems. but rather it is a description of work on a specific example of a
configuration which gives an interesting range of responses. The system
considered is a system of two beams coupled at right angles (Fig. l). The
primary beam AB is considered to be force excited in the vertical plane.
The secondary beau CD is arranged to have low stiffness for bending out of the
vertical plane. This type ofarrangement is common in many structural forms.
During an investigation or random vibration response cf a model of this type
[2] it was found that a narrow bandexcitation centred at a relatively high
frequency (52 H7. typically) produced large responses in the first out—of—plane
bending mode of CD at typically 1&5 Hz and in the first in-plane bending mode
of the structure at 9 E1. It was subsequently estahlished that the effect
also occurred with deterministic force excitation and was due to a four node
nonlinear interaction involving two plane handing nodes, toyether with torsion
and out-of—plane bending of the coupled hean cn. Fig. 2 shows some
representative transducer traces of the effects. The analysis summarised
below leads to an approximate prediction of the zone ofinteraction as a
stability boundary for the onset of cut-of-plane motion, and a qualitative
explanation of“ the response.

2. astem Eguations of Motion

We represent the in-plane motion of the primary bean: by ann degree of freedom
lumped perimeter model, with coordinates thud“, excited h: an external force
and the interaction loads at the coupling point. \\'e model the coupled team
CD as a nessless symmetric element with a incle discrete mass, driven by the
transverse displacement W and slope angle a at the coupling point C. (Fig. 3)-
Three Cartesian displacement functions u, v, w specz‘y the deformed elastic
line and three Euler angles specify the section principal directions at any
roint. To quadratic order, the local curvatures and torsion rate are reduced
to: (1 e .vneuvw ; K? = “nu/no ; 1 = ¢n+unvu (1)
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The following constraint releticns, tased on inenc-nsion of the elastic line

 

and negligible curvaturc in the local stiff plane of tending r. ' be applied:

1. 2

w(z) = -E I u‘."d7.c ; We) =Ii (z-z°)u"¢dz° (2)

0

Fhen using Gslerkin's method with asqu-sed defamation for-ms:

u(z) = f(i)uc ; em = h(z)d>°‘. rm = nu.) = 1 (3)

leads to a two degreeof treedcx representation of the coupled beam in terms of

its cut-cf—plsne bending coordinate uo, and torsion coordinate $0; retaining up
tc quadratic terns. Thus:

.. . z u . n ..n F - =u°+ (dbmbuo 4 _ + “33 + 7.0. R3] no + in Bhec 0 (h)

.. . * ‘2 + t .. -_ I
¢° + 26tuto° Ltdzo E? Eh n uo 0 (,)

'0

together with equations of plane :otinn:

fi4-_I&+m=£;qxiw,q25u (6)

PE - mazz - r£3(ui ¢ uo'éo) , (7)

F25 -n18u(u° o0 + 2u°¢° # uo¢ol (8)

P E Pcosflt (9)

It is clear fram U4] and (5) that its—plane motion mey excite nut-of—plane

bending and torsion through the quadratic coupling terms. Pcssihle forms of

interaction are discussed below.

3. Discussion

Two mode Interaction: For the case of (2 close to an in—plal’lfi natural frequency,

e single node reyresentation of the in--ple:e notion may be comiéered by using

9 = {j (j in (6) where [J- is an eigenvectcr cf the linearised plane prone". with

corresponding natural frequency uj. (6) the: has the torn

Mlnr + 25.10... + 1112.; = -r: . B ((12 + uii ) -
.1 I:3 .1 JEJ J ) la 3 o o o
_ ' .. § . . + .. + . F I .
mreJ rah (u°¢° 2u°¢° uo¢°) rka cash (10)

with

 

If there is some transverse displacement at the coupling xoim C associated with

this node, then B! will act as a permetric load in the no equation, while no

motion will generate a reaction force from: {7]. This is autopurezetric

coupling es éescribed in [3] end is luau-m 1.: be significant if
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Three Mode Interactiov-- Once more considering a sinnle nod:- representation of

the in-plane notion excited by the external force a: in (10) and assuming

significant ritch Angle at the coupling point. the arrangement of the quadratic

coupling terns in n in (1:) and (5) suggests a close parallel with paranetric

excitation of a two degree of freedom syster. and the possibility of combination

type instability when n is in the nemhhourhood of «at + uh, with the tangential

acceleration in. as the excitation parameter [b]. We may expect in addition

that u will be dynamically magnified by the external resonance if {I = wj so that

the condition n = wj -' m‘ + ob may be expected to denote a region of strong

three node interaction. In the coupled motion no and to will respond more or

less et their individual resonant frequencies. so that the quadratic reaction

moment term (3) on the in-plane system will contain significant !requency

content at at + m“, = NJ and will modify the in-plane notion. Note that purely

in—plane response is a solution of the system of equation: (h) - (6). The

stability of this solution for sm 1 out of plane disturbances may he considered

by neglecting, products of no and to in (E). The equations then represent a

perenetric excitation problem with excitation parameter:I' and or taken in the

form of steady—state frequency response functions, derived from the primary

excitation. The well known solution for the boundary curve of the comhination

instability zone may then be applied in the form:

  

A= 1 ‘ 1+d (uZ-Bz) ; d — mm, ; a: 2F_ubm‘€b€t

  

. - (12)
“If”: 2/? “1351, Mb + wt

where the excitation perimeter u is given by:

my? 2yak/TO n no (a) _

u = ’ (13)

 

2(m-Dfllt) J ob wt

(12) predicts a V shape instability zone in the (u. n) plane centred on

(an 4' wt). «0 is the steady state pitch angle at the coupling point for

forced vihrsticn at frequency n. and will itselfbe subject to dynamic

magnification at resonance of (I with wj. This simple approach gives good

correlation with regions of three node interaction ohserved on the model.

Four Pode Interaction: As an extension of the previous case we nay examine

four mode interaction formally by taking a two node representation of in—plane

motion 3 = I; :i s Li :5. This will lead to second equation of the form of
(10) representing e node excited at a frequency remote from its resonance by

the external force and the quadratic reaction moment terr. we will consider

these effects to be small. The reneining quadratic term in no admits an

interesting possibility. During out-of—plane motion uo response will occur in

the close neighbourhood of the out—of-plane bending frequency tab. The

quadratic term will have strong content at a frequency 2% and this may be

resonant with the second in-plane mode. leading to a complex pattern of four

mods motion :1? the conditions S: = u; = uh + wt ; mi = Zeb are realised. This
is precisely the type of response ooserved on the model end the system resonant

frequencies plotted in Fig. 14 show that the resonance conditions are satisfied.

L. gonclusiong

Following derivaticn cf syster'. differential equations we have given a

qualitative explanation of the corplex interactive motions ohserved with this

structural erranaeren . tor): is proceeding or. response prediction by
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nuzcrical integration.
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