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1 Introduction

Recently there has been a great deal of interest in the Higher Order properties of signals. These

properties have potential uses in fields as diverse as Economics [1], Plasma Physics [2], Speech

Processing [3] and Underwater Acoustics These Higher Order properties may be able to

supplement information obtained from traditional methods, and may prove useful in condition

monitoring and source identification. There has been a good deal of theoretical development in

this field, mostly carried out by statisticians, but there has not been much work done on the

applications of the theory. We are investigating the origins of higher order spectral content in real

signals.

Traditionally, most spectral analysis has concentrated on the Second Order Spectrum - the Power

Spectrum. This is because of computational convenience, and the {act that the magnitude of the

2nd Order Spectrum represents a useful physical property of the signal - the power.

The Power Spectrum is sensitive to the lst and 2nd order properties (characterized by the mean

and variance) of the incoming signal, but many real-life signals may have higher order properties

as well - skew (the Third Order Moment) and kurtosis (the Fourth Order Moment). Thus there is

a possibility that a study of the third and fourth order spectra of a signal may reveal information

about that signal that cannot be obtained from conventional Power Spectrum analysis. In this

work we have concentrated on the 3rd-order Spectrum — the Bispectrum.

2 The Bispectrum

Higher Order spectral measures are usually found by extending the definitions of the familiar

Second-Order measures. The Bispectrum of a continuous signal can be expressed in terms of

the 3rd order cumulants‘ of the signal. For our purposes it is more convenient to express the

(continuous) Bispectrum as a triple product of Fourier Transforms.

Eiflafl) = Xl/1)X(f2)-X-(f1 + In) I (1)

‘Cumulants are related to the signal’s moments ~ the lst order cumulant is the mean, and the 2nd order cumulnnt

is the auto-correlation function. A discussion of cumulants can be found in [6].
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The third term X'(f] + f2) in equation 1 can be re-written as the Fourier Transform of a third
non-independent frequency f3, which must satisfy f; + j, + f; = 0. For random noise, the phase of
the signal at three different frequendes will generally be uncorrelated, and as a result the Bispectral

contributions will disappear with averag‘ng However, if three frequencies have phases which
are related in some way, then the Bispectrum will not average to zero. This is the key to the
mechanism of the Bispectrum. Non-linear interactions between frequencies give rise to related
frequency triplets, and a non-zero Bispectrum. This effect is called quadratic phase coupling.

Whereas the 2nd order Spectrum can be plotted in 2 dimensions as power spectral density ver-
sus frequency, the Bispectrum is plotted in three dimensions with two frequency axes f1 and f;

and the Spectral content rising out of this frequency plane. It is not necessary to compute the
Bispectrum for all combinations of f] and I; because there are a number of symmetry lines in

the Bispectral domain, which substantially reduce the number of calculations required. For the

discrete Bispectrum, the non—redundant region is called the Principal Domain, and can be divided

into two triangles, called the Inner Triangle (IT) and the Outer Triangle (OT) [4](see Figure 1).
Certain properties of the signal show themselves by their form in these triangles, and there are a
number of tests devised by Hinich [1], [5] which make use of the form of the Bispectrnm in one or
other of the triangls.

A test for skewness can be carried out bysumming the modulus squared Skewness function (see
equation 3 below) for each point in IT. If the signal is not skewed then this sum will be x2
distributed, with twice as many degrees of freedom as there are points in IT. By calculating the

deviation of the sum from the x7 distribution with these degrees of freedom, at some confidence

level, a decision can be made on the skewness of the signal In the case of Gaussian signals,
which have no statistical properties above order two, all spectra of order above two (including the
Bispectrum) will be zero, so this test can also be said to he a test for non-Gaussianity. If the

skewness function is statistically constant in IT then the process is linear. The same test can be

carried out in the OT to give a test for stationarity.

For a finite sequence of data, estimation techniques must be used to give rdiable predictions. The
incoming data signal x(t) is sampled at a frequency high enough to prevent aliasing. The sampled
sequence .15., of length N is then divided into K segments (which can overlap) and the L-point
Discrete Fourier Transform XKw) is formed for each segment i, now with discrete frequencies 1.1.
Within each segment the rum Bispectrum is then computed from a triple periodogram product.

B.‘(W1.w2) = Xi(U1)X-‘(W2)Xi'(%l

The Bispectral estimate is then formed by taking the average Bispecttum over all the K segments.

1 K

BK(“’11“’2)= 75 ZBE(le“’2) (2)
i=l

This estimate is asymptotically consistent provided that the number of segments is at least as large
as the FFT size used [I] (for non-overlapping segments). However, the variance of this estimator
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is proportional to the triple product of the spectra 5(u1)5($12)$(w3), and so this estimate is

sensitive to the variance of the signal. A normalised Skewness estimator can be formed by dividing

equation 2by the triple product of spectra

i 316001.91) i2

S'(w—_x)5(w2)5(wa) (3)81(9’hk’2) = 2

This expression is valid for the situation where the number of segments is identical to the FFT

size, and there are no overlaps.

An alternative normalisation, called the bicoherence function, can be formed [2] from

| E[X(wi)X(w2)X(wa)l I2
Ell X(w-)X(w2) I‘lEil X003) 1’]

The biooherence function only takes values between 0 and l, with avalue close to 1 indicating a

strong quadratic phase coupling. This function may prove a useful measure in the future, as it

is easier to interpret than the skewness function. However, the statistics of the variance ofthe

skewness function are better defined, and so statistical tests usually use the skewness function.

(4)b'(w1,u;) =

3 Experiments

The Bispectrum estimation routines written in MATLAB were tested by sampling some real con-

tinuous skewed noise. A continuous source was used because there are practical limitations on the

use of discrete linear models to generate skewed signals A White Noise Generator was used as

a signal source, and the signal was subsequently [cw Pass (LP) filtered, squared, and sampled to

give a skewed sequence In. For a fixed sample rate f,, the signal must be bandlimited at f0 < £1

to prevent aliasing, because the squaring process generates signal components at Zia.

Data were captured for two Low Pass Filter settings with a fixed sampling rate. The first signal

was LP filtered with f0 = resulting in a signal bandlimited to f./2 after squaring, and so the

sampled signal was unallased. The second signal was LP filtered to f0 = lgl, resulting in a signal

bandlimited to I. after squaring, so this signal was aliased. The time histories, Power Spectra, and

the normalised Skewness functions of these captured signals are shown in Figure 2. Only skewness

points larger than 10.6 are shown in these plots, because these are significant at the 0.5 per cent

level

For the properly sampled signal, it is evident that the GT is very small, whereas for the under

sampled signal it is evident that the GT is more highly populated. The statistical tests of Hinich

also indicate that the 2nd data set has a much larger OT, and therefore, if the signals are both

assumed stationary, the tests indicate that the second time history is aliased. Both signals have a

significant IT component because they are derived from a nonlinear filtering operation (squaring)

on 'a Gaussian process (White Noise).
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It is also worth noting that in this case the existence of aliasing could be predicted just aswell

from the Power Spectra. The unaliased signal has a Power Spectrum which has a very low level at

the folding frequency f./2, whereas the aliased signal has a large Spectrum right up'to the folding

frequency.

Current attention is now focussing on the Bispectral features of real mechanical systems. An

experimental rig has been set up with anelectrically powered air compressor mounted on a perspex

surface (see Figure 3). It is possible to insert vibration isolators between the compressor and its

mounts, and measurements of acceleration and sound level are possible for each configuration. The

purpose of these experiments is to investigate how Bispctral components are generated, how these

components are attenuated with distance from source, and whether the Bispectral components in

some way characterize the machine.

Initial results indicate that the vibration on the compressor is highly sinusoidal, and has a small

Bispectrum. The vibration levels on the perspat sheet however, show significant Bispectralcontent.

This may indicate a non-linear transmission path between the source and measurement position.

We are continuing our experiments to see whether the shape of the Bispectrum changes as the

measurement position changes, and whether the Bispectral content diminishes more quickly or less

quickly with distance than the Power Spectrum.

We are also interested in finding outif there are correlations between the Bispectra measured at
difierent plate positions for a particular vibration isolator. If these correlations exist, they may

have uses in condition monitoring and related subjects.

4 Conclusion

It is evident from the discussion presented above, that the Bispectrum can reveal information

about a system that the Power Spectrum cannot. However, the analysis and interpretation of

these results is not as straightforward as for the Power Spectrum, and more work is warranted on

the orig'ns of Bispectral content. Our experimental work is continuing, and we hope to find some

correlation between the various experimental set—ups and the measured Bispectra.
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Figure 1: Principal Domain of the Discrete Bispectrum
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Figure 2: a) Unallased skewed Noise

2

t" u-

pl
it

ud
e

A
m

0V5

:— u-
'8

Po
we

r
Sp

ec
tr

um
(d

D)

~25
o normalised frequency (= fl)“.

Modulus Squared Skewness (> 10.6)

=f
/I

.)

.u

no
rm

al
is

ed
fr

eq
ue

nc
y

(

 

) 0.5

 

normalised frequency (= f/f.)

 

b) Aliased Skewed Noise
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Figure 3: Experimental Set-Up
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