AN INTRODUCTION T ADAPTIVE ARRAY PROCESSING

by: J.W.R. Griffiths

1. Introduction

Array processing systems which can respond to an unknown interference
environment are currently of considerable interest. The fundamentals of
such systems are by no means new - basically they depend on Weiner's filter
theory - but application in practice has been limited both by technology
and by the lack of robust algorithms rapid enough for real time operation.
Rapid strides in the past decade or so in the twin fields of electronic
. components and computer technology have changed the situation considerably
by offering the possibility of complicated signal processing in real time
at economic costs. This has led tc an increased interest in adaptive
processing and although it is probably still finding its main application

in the defence field the civilian applications are growing.

An array comprises a set of sensors, the outputs of which are combined
in some way to produce a desired effect, e.g. a set of beams ‘'loocking' in
varicus directions. The sensors may be of many forms, e.g. acoustic
transducers for sonar, monopcle aerials for h.f. receptiqn, microwave horns
in a radar system, the influence of the application on the processing
reguired concerns the technology not the principles invalved. lsensors may
be distributed in space in varlous ways but the two most common are the
linear array, normally a set of equally spaced sensors in a straight line
and the circular array in which the sensors are arranged uniformly in a
cirgular pattern. Although the distribution of sensoxs obviously affects the
problem theleffect is only of second order. The linear array, apart from -
being the most common in practice, 1s also the simplest to describe and
understand and will be used in this paper to introduce the subject. The
introduction to the theory will also be limited to 'band pass' systems,

i.e. systems in which the signals can be described in terms of a carrier
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with a complex amplitude. In the theory the carrier will thus not be
explicit and the calculaticns will be based on the complex numbers

representing the amplitude at any time.

2. Two Element Array

As shown in Figure-1l the output of a two element array for a plane

wave arriving from an angle 6 will be

y = 2 cos ¢/2

m
where ¢ = ixg sin ©

and 4 = spacing between elements

X
For example, 1f d = 7 then $ = M gin © and the polar diagram is as shown

in Figure 1.

Thus if a wanted signal was at 0 = 0° (broadside position) and an interference

at © = 30° the ratio of gain of wanted signal to interference would be

73 (3 dB). A strong interference would thus mask a weak signal,

However, if we weight the signals from the two elements as shown in Figure 2

it is possible to fix the gain of the array to the want;eld. signal as wnity
wﬁile adjusting the weights to minimise the interference. In this simple
case, since there is oﬁly one interfering signal, it is possibie to null it
complétely, viz:

ej $/2 o3 ¢/2

!

y = w

Cbﬂstraj.nty 1 when & = 0 l.e. % = 0

i
[

Thus "1 + wz

For null at say ¢1

wl ej¢1/2 + "2 e_:wl/2 = 0
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Hence w 1 and w L

en = .——I‘—-' t— S ————t—
1 1 - &% 2 1 -e 3%

e.q. ifd = A/2 and 8 = °

then ¢1 = nw/2
Y = V2 cos{$/2 + 174}

as is shown in Figure 2.

3. Multi Element Arxray

We: can extend the principles discussed for the two-element array
for many elements but in doing so it is most convenient to resort to matrix
algebra. Figure 3 shows the basic system and in Fiqure 4 we define the
.varibus vectors representing the signals in the array. S is the vector
© representing the wanted signal, W the weights and N the unwanted signals/
interference/noise. It is important to note thap when we wish to 'look'
in a particular direction the wanted signal is the signal coming from that
direction (or nearly so - a factor we will consider later) and signals
coming from other directions are regérded as interference. When we choose
to "look' in ancther direction the role of wanted signal and interference

will be interchanged. The output from the array is given by
'y = W) % + W, Xy + Wy X3 erasasa W X

= WX

To keep the gain to the wanted signal constant we require

We = 1

where C is a'steering' vector to steer the beam in the direction of S,

e.g. for a linear array will comprise a set of phase changes
f.e. ¢ = {3 Y=0 .....k-1

Hence we have a set of equations which allow us to minimise the contribution

to y of interference sources while maintalning the gain to the wanted signal.
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If the number of sources is less than the numbex of elements then the
system can set nulls at the interfering source directions as was done
in the two element case for the one interfering source. Otherwise the

system will minimise the mean square output of y.

The expected value of y2 is given by

it - e[ ]

= WT E[XXT] W

E(Yzl

where Rxx 1z the correlation matrix.
Using Lagrange Multipliers we can define a cost function
HW) = W R, W+ A (We-1) et tereirrerreiriaeaens (2)
xX .
by differentiation we can obtain the optimum value of W to minimise

B(Yz)

W —— T P )

opt

Power 6utput P = E[yz]

Hence for optimum condition

P o= Woot Box Wope

c
Xx opt T -1
C R C
T
~ W c
R - o PN 7'}
C R_C CR_C
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4. Recursive Sclutions

It can be shown that this solution is analogous to the matched

.filter approach for detecting a pulse in coloured noise. Thus 1f we are
dealing with a stationary system and are not in a hurry the solution is
fairly straightforward. The strategy would be to steer the system in as
many directions as reguired and calculate the optimum ‘weight wvector' for
each direction. This would enable the power ;eceived from each direction
to be measured under the optimal conditions. Normally in practice neither
the condition of stationarity nor of ample time hold and wﬁat we require is
a system which can adapt to changing conditions and preferably do this very

rapidly.

Tﬁe most cbvicus approach is to use a recursive method and to update
the weights as new data is processed. We have seen thgt our critérion is to
minimise the expected mean square of the output (f£.m.s.) subject to the
constraint. If we imagine a multidiﬁensionél space whose ordinates are the
welght vector components then for a given environﬁental situvation, i.e. a
particular group of incoming siénal_interference/noise, a set of confours can
be drawn for a given power output. These will form a 'Bowl' and we are tryingl
Vto seek the minimum (bottom) of this bowl subject to the constraint requirement.
Figure 5 illustrates this point uﬁing‘a very simple situation of a weight
vector Eomprising two real components. One of the standard methods of
searching for the minimum is to move along the direction-of steepest descent.
We reéuire, however, Also to satisfy our constraint and so we approach the
solution in a series of double steps. Step l alters tﬁe weights in such a
manner as to move aloné the direction of steepest descent and then the second
step 15 to correct the weights to cbey the constraint criterion. From
‘Equation (1) we cbtain the gradient vector

vV = Rxx W U P £
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We can now write our recursive formulation as

'
wk+l

k xXX Kk
eerenrenerarees. (B)
- ) P Y T
Wea1 Weqp T Ol - cw et

Again this is illustrated by the simplified situation of Figure 6.

The constraint reguires the tip of the vactor.w to lie on a straight line.
In the more normal multi-dimensional situation this would be a surface.
Several other important factors can be noted from this. In the case of
one interfering signal the vector W is adjusted until it is orthogonal to
‘the interference. Thus as the interference approaches closer to the
wanted direction the magnitude of the vector must increase considerably

to maintain the two conditions of orthogonality and pbeying the constraint.
This property can be used to prevent nulling of a wanted signal which is

not exactly in the direction to which the array is being steered.

Conventional weighting, i.e. a weight vector of equal co-ordinates (usually
%C) is also illustrated on the diagram of Figure 6. If we let
W = wc + w

where Wc = conventional welght vector

T
then since C° W =)
and cw. =1

T

then Cw =0

Thus the vector W comprises the conventional weight vector Wc together

with a component w which is orthogonal to the constraint vector
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The equation for cptimal weighting contains the factor R;i and

yet we will not even know Ry’ i.e. E(xir). What we will have is an

estimate of Rxx from the data available so far. One approach is to

replace R in the steepest descent algorithm by the present value of

X,

i.e W' = W - B Tw

.. k+1 k % X W
T

but xk Wk = Yk

W = WMo BXewy

This provides the basis of a simple feedback system which is illustrated

in Figure 7.

An alternative approach is to use a recursive method to estimate
Rxx or better still to estimate R;;, the latter method avoiding both the
processing time‘and inherent difficulties of inverting a matrix. There
are many other methods of tackling this problem of adaption at least one
for every worker in the field! However, none is a panacea since the 'best’
solution varies according to the enviionment in ﬁhich it is to be applied.

In simulation it is falrly easy to set up data for which a particular

algorithm works well but just as easy to produce data for which it does not!:

We have not discussed the effect of truncation and quantization in
the processing nor the need for robustness in dealing with, for example,
variations of the sensitivities or positions. Suffice it to say that these

introduce further complications but are capable of analysis and control.

In general wide-band systems can be dealt with by using an F.F.T.
processor'to provide a set of narrow-band systems to which the adaptive

method i5 applied individually.

2-f



5. References

This in;:oductory paper to the subject of adaptive arrays has
beer. based on a paper presented by the author and his colleague, Dr. J.E.
Hudson, at the NATO Study Institute on Signal Procéssing held at
Portovenere, Italy in September 1976. The Proceedings have been
published by the Reidel Publishing Co., Holland and interested readers

are referred to this for further reading and many references.

6. Acknowledgement

The author would like to acknowledge the many sources from which
information has been cobtained and in particular the assistance of his

colleague, Dr. J.E. Hudson.

a1



e

&

S,
| I

|

]I: T

I

e
Wk
QU

e

tn













.Fj.'gu.re 5.  Simple case showing egual power contours
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Figure b. Simple case showing iterative sclution
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Sensor 3

Fig. 7 A Narrow-Band Array-Space Maximum likelihood (Froétl
circuit,
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