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Array processing systems which can respond to an unknown interference

environment are currently of considerable interest. The fundamentals of

such systems are by no means new - basically they depend on Weiner's filter

theory - but application in practice has been limited both by technology

and by the lack of robust algorithms rapid enoughfor real time operation.

Rapid strides in the past decade or so in the twin fields of electronic

components and computer technology have changed the situation considerably

by offering the possibility of complicated signal processing in real time

at economic costs. This has led to an increased interest in adaptive

processing and although it is probably still finding its main application

in the defence field the civilian applications are growing.

An array comprises a set of sensors, the outputs of which are combined

in some way to produce a desired effect, e.g. a set of beams 'looking' in

various directions. The sensors may be of many forms, e.g. acoustic

transducers for sonar, monopole aerials for h.f. reception, microwave horns

in a radar system, the influence of the application on the processing

required concerns the technology not the principles involved. Sensors may

be distributed in space in various ways but the two most common are the

Linear array, normally a set of equally spaced sensors in a straight line

and the circular array in which the sensors are arranged uniformly in a

circular-pattern. Although the distribution of sensors obviously affects the

problem the effect is only of second order. ‘The linear array, apart from

being the most common in practice, is also the simplest to describe and

understand and will be used in this paper to introduce the subject. The

introduction to the theory will also be limited to 'band pass' systems,

i.e. systems in which the signals can be described in terms of a carrier
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with a complex amplitude. In the theory the carrier will thus not be

explicit and the calculations will be based on the complex numbers

representing the amplitude at any time.

2. 'Iwo Element Arrax

As shown in Figure-l the output of a two element array for a plane

wave arrivingfrom an angle 9 will be

y = 2cos¢l2

11
where O = Era sin 3

and d a spacing between elements

A
For example, if d -= 3 then ¢ = If sin 9 and the polar diagram is as shown

in Figure 1.

Thus if a wanted signal was at e = 0° (broadside position) and an interference

at 9 = 30° the ratio of gain of wanted signal to interference would be

5 (3 d3) . A strong interference would thus mask a weak signal.

However, if we weight the signals from the two elements as shown in Figure 2

it is possible to fix the gain of the array to the wanted. signal as unity

while adjusting the weights to minimise the interference. In this simple

case, since there is only one interfering signal, it is possible to null it

complete 1)! , viz :

3W2 -j¢/2y = wle + w2 e

Constrainty = 1 when 0 = 0 La. 0 = 0

Thus wl + w2 = 1

For null at say $1

    wl ej¢l/2 + w2 e_j¢1/2 = O



 

then ¢1 = 11/2

y = EcosM/Z + "/41

as is shown in Figure 2.

3. Multi Element Arrax

We- can extend the principles discussed for the two-element array

for many elements but in doing so it is most convenient to resort to matrix

algebra. Figure 3 shows the basic system and in Figure 4 we define the

'various vectors representing the signals in the array. 5 is the vector

’ representing the wanted signal, w the weights and N the unwanted signals/

interference/noise. It is important to note that when we wish to 'look'

in a particular direction the wanted signal is the signal coming from that

direction (or nearly so - a factor we will consider later) and signals

coming from other directions are regarded as interference. When we choose

to "look' in another direction the role of wanted signal and interference

will be interchanged. The output from the array is given by

'y = m1x1+u2 x2+w3x3 ukafi‘

= wa

To keep the gain to the wanted signal constant we require

ch = 1

where C is a'steering' vector to steer the beam in the direction of S,

e.g. for a linear array will comprise a set of phase changes

Le. ‘c :1 '{e-jml r = o ..... k-l

Hence we have a set of equations which allow us tominimise the contribution

to y ofinterference sources while maintaining the gain to the wanted signal.
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If the number of sources is less than the number ofelements then the

system can set nulls at the interfering source directions as was done

in the two element case for the one interfering source. Otherwise the

system will minimise the mean square output of y.

The expected value of y2 is given by

EM] = E[wéx xTw]

= WT E[XXT] W

3(y2)

= w R w .... .. (1)

where Rxxis the correlation matrix.

Using Lagrange Multipliers we can define a cost function

mm = an w+ A (ch -1) (2)xx

by differentiation we can obtain the optimum value of w to minimise

3(y2)

W = —-—1-—- ....'...................... (3)

Power output P =' E[y2]

T
-'= W Rm '1

Hence for optimum condition

P a wopt Rxx Hopt



  

4. Recursive Solutions

It can be shown that this solution is analogous to the matched

‘filter approach for detecting a pulse in coloured noise. Thus if we are

dealing with a stationary system and are not in a hurry the solution is

fairly straightforward. The strategy would be to steer the system in as

many directions as required and calculate the optimum 'weight vector' for

each direction. This would enable the power received from each direction

to be measured under the optimal conditions. Normally in practice neither

flue condition of stationarity nor of ample time hold and what we require is

a system which can adapt to changing conditions and' preferably do this very

rapidly .

The most obvious approach is to use a recursive method and to update

the weights as new data is processed. we have seen that our criterion is to

minimise the expected mean square of the output (Lm.s.) subject to the

constraint. If we imagine a multidimensional space whose ordinates are the

weight vector components then for a given environmental situation, i.e. a

particular group of incoming sighelinterference/noise, a set’ of contours can

be drawn for a given power output. These will form a 'howl' and we are trying

to seek the minimum (bottom) of this bowl subject to the constraint requirement.

Figure 5 illustrates this point using a very simple situation of a weight

vector Icomprising two real components. One of the standard methods of

searching for the minimum is to move along the direction -of steepest descent.

We reguire, however, also to satisfy our constraint and so we approach the

solution in a series of double steps. Step 1 alters the weights in such a

manner as to move along the direction of steepest descent and then the second

step is to correct the weights to obey the constraint criterion. From

Equation (1) we obtain the gradient vector

V = nxxw (5)
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We can now write our recursive formulation as

I = -

"M1 wk BR):ka

(6)

= I _ TI T
"m1 "1H1 +Cu cwk+l}/cc

Again this is illustrated by thesimplified situation of Figure 6.

The constraint requires the tip of the vector. H to lie on a straight line.

In the more normal multi-dimensional situation this would be a surface.

Several other important factors can be noted from this. In the case of

one interfering signal the vector W is adjusted until it is orthogonal to

‘the interference. Thus as the interference approaches closer to the

wanted direction the magnitude of the vector must increase considerably

to maintain the two conditions of orthogonality and obeying the constraint.

This property can be used to prevent .nulling of a wanted signal which is

not exactly in the direction to which the array is being steered.

Conventional weighting, i.e. a weight vector of equal cohordinates (usually

rid) is also illustrated on the diagram of Figure 6. If we let

W =1 We + u

where we =conventional weight vector-

T
then since C H = l

and CWc=l

then CTm =0

Thus the- vector W comprises the conventional weight vector We together

with a component m which is orthogonal to the constraint vector
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The equation for optimal weighting contains the factor 11;: and

yet we will not even know Rxx, i.e. BURT). What we will have is an

estimate of Rxx from the data available so far. One approach is to

replace Rxx in the steepest descent algorithm by the present value of

xxT.
'1'

i.e. w];+1 — wk — Bxk kak

but x: wk = yk

" "in “"k"8kak

This provides the basis of a simple feedback system which is illustrated

in Figure 7.

An alternative approach is to use a recursive method to estimate

xxx or better still to estimate R3, the latter method avoiding both the

processing time and inherent difficulties of inverting a matrix. There

are many other methods of tackling this problem of adaption at least one

for every worker in the field! However, none is a panacea since the 'best'

solution varies according to the environment in which it is to be applied.

In simulation it is fairly easy to set up data for which a particular

algorithm works well but just as easy to produce data for which it does not!

Hue have not discussed the effect of truncation and quantization in

the processing nor the need for robustness in dealing with, for example,

variations of the sensitivities or positions. Suffice it to say that these

introduce further complications but are capable of analysis and control.

In general wide-band systems can be dealt with by using an F.F.T.

processor to provide a set of narrow-band systems to which the adaptive

method is applied individually.
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Ipiigure 5. Simple case showing equal power contours
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Figure 6. simple case showing iterative solution
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Sensor 3

Mg. 7 A Narrow-Band Array-5153c: Maximum likelihood (Frost)
circuit.
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