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INTRODUCTION

There has been a considerable interest recently in the use of singular value
decomposition in the processing of signals from arrays in order to achieve
higher resolution. Two particular techniques which have received much
attention are the Music algorithm developed by Schmidt(l), and the method
proposed by Kumaresan and Tufts(2). These methods have mainly been applied
to the separation of sources in the far field of the array, but as arrays
become larger it is quite possible for the sources to be in the near field.
This paper discusses the application of these techniques to the separation
of sources in the near field, and it is shown that by use of a fairly simple
process the same type of performance can be obtained in the near field as is
obtained in the far field.

SYSTEM MODEL

The system being considered comprises a linear array of N equally spaced
sensors receiving signals originating from a number of sources of unknown
position. The sources are assumed to have a sinusoidal form given by the
expression

a (t) = A cos{wt+ ¢ ) (1)
m m m m

where Am, W and ¢m are the amplitude, frequency and phase of the source
respectively.
The signal at the ith element due to the mth source will be

s .(t) = a(t) . c_. (2)
mi m mi

c i is a factor which represents the effect of the propagation and is given by
1 .
c . = — exp(jkr_.) (3)
mi r . mi
mi .
where k is the wave number 27/X and ros is the range from source m to element
i.
In practice the values of r_ . are fairly similar and although the small

. . mi .
differences have a very significant effect on the phase the effect on the
amplitude can be ignored. We can then re-define c; as

ci = exp(Jkrmi) (4)

If there are M sources then the total signal received by element i is given by
M

s;(t) =z s.(6) (5)
m=1
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It is convenient to express the signals received by the array at a particular
instant as a column vector viz:

sTey = [s,(00, s,0) oo, s (1), (6)

We can represent the space effect on each source as an N dimension column

vector: 7
egp(Jkrml)
eXp(Jkrmz)
c = : (7)
m .
exp(JkrmN)
od
Similarly the source signals can be represented as a signal vector
]
A (t) al(t), az(t) ....... aM(t) (8)

and the space vectors can be combined to form a matrix.

C, C., C, ...... C (9)

The vector S(t) represents a snapshot at a particular instant in time
s(e) = A(r) . ¢ (10)

In practice since the bandwidth is usually small compared with the centre
frequency we express the received signal snapshot vector as a column vector
of complex values representing the amplitude and phase of -the received
signal on each element at that instant viz:

X(t) = E{l(t), %y (E) Lo ] (11)

Of course in addition to the signals there is almost certainly some
. accompanying noise. ’

If a succession of snapshots are taken then we form a data matrix containing
the set of vectors X(k), the integer k representing the number of the
snapshot.

D X(1), X(2), ....,X(K) (12)

An important parameter in the analysis is the covariance matrix which is
defined as

‘R = E [X"XT] (13)
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In practice we have to estimate the covariance matrix from the available data
and the best estimate is given by

K

R = I X (&) XT(k) (14)
k=1
The the estimate of the covariance matrix is given by
R = DW DT v (15)

EIGENVECTOR DECOMPOSITION

The covariance matrix can be decomposed into a number of matrices each of
which is the outer product of an eigenvector of the covariance matrix viz:

R = I A U, UL (16)
i 1 1 1

where Ai are the eigenvalues.

This can be expressed in matrix notation as

o
v

R = U AUT (17)

where U is a matrix whose columns are the eigenvectors and A is a diagonal
matrix of the eigenvalues.

It is fairly easy to show that the eigenvalues can be divided into two
classes, those associated with the noise - the so called noise subspace -

and those with the signal - the signal subspace. The eigenvalues of the
eigenvectors in the noise space are equal to the noise power and those of

the signal space are in general equal to the signal power of the appropriate
signal plus the background noise. We can thus write equation 17 as

- (18)
R = RS + RN

In practice only an estimate of the covariance matrix is available and as
the number of signals is not generally known apriori then the division into
two classes is subject to error. However, assuming such a division is made,
then it is possible to use the eigenvectors to determine both the position
and power of the signals. Since the noise eigenvectors are orthogonal to

the signal vectors the beam patterns obtained by multiplying the vectors by
the steering vector will have zeros in the directions of the signals. The
MUSIC algorithm makes use of this fact and by averaging the beampatterns
resulting from the noise eigenvectors obtains an accurate estimate of the
signal positions. A further simple process enables the powers to be
obtained. The algorithm proposed by Kumaresan and Tufts is also based on

the decomposition of the covariance matrix and on the division into the noise
and signal subspaces. However this algorithm uses the signal subspace
eigenvectors and attempts to determine a vector such that

Rg - W = 0 (19)

One of the elements of the vector W is made equal to unity to avoid the
trivial solution of W=0.
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PARTITIONING TASK

It was mentioned earlier that the signal eigenvalues correspond to the signal
powers. This is only true for widely separated signals. In Figure 1 we see
the effect on the eigenvalues of moving one source across the range of angles
while the other source remains stationary. As the two sources get close
together the eigenvalues separate into a sum and difference of the signal
powers and clearly one of the eigenvalues is tending towards zero. Thus

the partitioning task can become very unreliable unless we have a very large
amount of data.

RESULTS

In Figure 2 we see the beam patterns of the individual noise eigenvectors.
In Figure 3 we show the beampatterns obtained using the MUSIC and the
Kumaresan-Tufts algorithms. In both of the figures there were 8 elements
spaced by half a wavelength and there were three sources in the far field.
It can be seen that both algorithms accurately locate the positions of the
sources. Using this data we can estimate the power of the signals and in
Figure 4 we see a typical conventional angular spectrum together with the
powers estimated from the algorithms. The striking ability of these methods
to locate and estimate the power of the sources is well illustrated.

If the sources are in the near field then we need to use the appropriate
steering vector. Figure 5(a) illustrates the effect of continuing to use

the far field steering vector. It can be seen to have a very significant
effect on the performance. However by first processing the data as though
the sources are along a line normal to the array and at an appropriate
distance (in effect focusing the array) Figure 5(b) shows that a considerable
improvement can be obtained.

Of course in order to compute these curves we must have apriori knowledge of
the expected distance. Without this it would be necessary to process the
data for many different distances - a time consuming process.
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FIGURES

Figure 1 - Variation of eigenvalues with spacing
Figure 2 - Noise eigenvector beams
Figure 3 - MUSIC and KT algorithms
Figure 4 - Angular Power Spectrum
Figure 5 - Showing the effect of using an incorrect steering vector.
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Figure 3. MUSIC and KT Algorithms
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Figure 4. Angular Power Spectrum and Estimated Power
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Figure 5. The Effect of using an
Incorrect Steering Vector
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