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The objective of this study is to clarify the vibration generation mechanism of agricultural ma-
chinery caused by the interaction between the tire lugs and the road surface. It is important to
investigate the lug excitation force occurring on a rolling agricultural tire in order to clarify the
vibration generation mechanism. In our previous study, it is confirmed that the dynamic behavior
of rolling tire is influenced by the vibration characteristics of the tire and only the rigid modes
can affect the rolling tire behavior. Therefore, we modeled the agricultural tire as a rigid ring tire
model (SWIFT model) in order to estimate the lug excitation force. As for agricultural tire, out-
of-plane dynamics is also important due to cross-stich lugs. This model can describe not only in-
plane tire dynamics but also out-of-plane tire dynamics. An important aspect of tire modelling is
the identification of the tire model parameters. As for model parameter identification, few studies
have been carried out to identify out-of-plane parameters, while many studies were done with
regard to in-plane parameters. In this research, the equations of motion of the rigid ring model are
derived and calculation procedure for obtaining the natural frequencies of the rigid ring model is
formulated. Furthermore, the model parameters are identified by minimizing the difference be-
tween measured and calculated natural frequencies using Downhill Simplex method. The natural
frequencies and natural modes predicted by the calculation using the identified model parameters
show good agreement with those obtained experimentally.
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1. Introduction

In Japan, expansion of farm management scale is promoted in order to perform efficient and stable
farm management. This tendency increases the opportunity when tractor runs on pavement. Therefore,
the speedup of tractor is expected. As a result, the speedup causes the increase of vibration and noise.
Generally, agricultural tires have high and large cross-stitch lug. So, lug excitation force is primary
cause of vibration during running on pavement. The objective of this study is to clarify the vibration
generation mechanism caused by tire lugs. It is important to evaluate lug excitation force.

In our previous study, it is confirmed that the dynamic behaviour of rolling tire is influenced by
the vibration characteristics and only the rigid modes can affect the rolling tire behaviour [1,2].
Therefore, we modelled the agricultural tire as in-plane rigid ring model and the lug excitation forces
occurring on a rolling tire are identified as for vertical and longitudinal direction [3]. However, as for
an agricultural tire, lateral direction lug excitation force also generates due to cross-stitch lugs. In
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order to estimate lateral force, the rigid ring model to describe the out-of-plane tire dynamic is re-
quired. The rigid ring tire model (SWIFT model), which is introduced by Pacejka,H.B is able to
describe dynamic tire behaviour for in-plane and out-of-plane motion. At that time, an important
aspect of tire modelling is the identification of the model parameters. As for tire model parameters
identification, few studies have been carried out to identify out-of-plane parameters, while many
studies were done with regard to in-plane parameters. In this research, the equations of motion of the
SWIFT model are derived and the equations of motion are rearranged to describe the in-plane and the
out-of-plane dynamics. From the rearranged equations of motion, frequency equations are derived
separately and calculation procedure for obtaining the natural frequencies of the rigid ring model is
formulated. Furthermore, the model parameters are identified by minimizing the difference between
measured and calculated natural frequencies using Downhill Simplex method. The natural frequen-
cies and natural modes predicted by the calculation using the identified model parameters show good
agreement with those obtained experimentally.

2. Modelling of agricultural tire

2.1 Rigid ring model

The rigid ring model is based on the research of Zegelaar, P.W.A.[4] and Maurice, J.P.[5] and this
model is referred to as the SWIFT (Short Wavelength Intermediate Frequency Tire) model proposed
by Pacejka, H.B.[6]. This model represents a pneumatic tire-wheel system and consist of four com-
ponents : the tire tread-band, the tire sidewalls with pressurized air, the wheel and a contact model as
shown in Fig. 1. The tread-band is modelled as a rigid circular ring and the wheel as a rigid body.
The tread-band and the wheel are connected through sidewalls with pressurized air three-dimension-
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Figure 1 : Rigid ring model (SWIFT model)

2.2 Equations of motion
The wheel has three degrees freedom in translational motion : the vertical, longitudinal and lateral
displacements and rotational motion about the axes perpendicular to the wheel plane. The equations
of motion for the three translational motion of the wheel read:
Fx = ma).(.a + Cbx(Xa - Xb) + kbx(Xa - Xb) + Csz(Za - Zb)
Fy =Ma¥a +Coy(Ya — o) + Koy (Ya — Yb) (1)
F, =m.Z, + Cbz(za - Zb) + kbz (Za - Zb) - CbXQ(Xa - Xb)
and the equation of motion for rotational motion of the wheel read:

Ivlayzlayéa +Cb9(éa_éb)+kb9(0a_9b) (2)
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The tire ring has six degrees of freedom : three translational motion and three rotational motion. The
equations of motion for translational motion of the tire ring read:

MpXs + Cox (Xo — Xa ) + Kox (Xo — Xa) + Co2€2(Zn — Za) = Fx

My Yo + Coy (Yo — Ya) + Koy (Yo — Ya) = Fey (3)
My Zp + Coz(Zb — Za) + Koz (2o — Za) — Cox2(Xo — Xa) = R

and the equations of motion for rotational motion of the tire ring read:
lox7b + Coy b + Koy 76 + Coy Qi + loyQurn = —1Fy —iypFe, + M«
LoyBh + Coo (B — Ba) + Koo (65 — 6a) = FeFox + My (4)
o2/ + Coy W + Koy Wn + Coy Qyp + oyQyp = M,

where Xa, Ya, Za are wheel (shaft) displacement and @, is the small derivation of the angular displace-
ment of the wheel on the top of displacement due to steady speed of rotation Q ; F«, Fy,F, are ex-
ternal force acting on the wheel (shaft) ; Mgy is the drive torque. X, Y», Z» are tire belt displacement
and v, 6,y are derivation of angular displacement of the tire belt ; Fe, Fey, Fe; are lug excitation
force generated at the tire-road interface ; M, M, M, are rolling resistance torque acting on the
tire belt ; m, and I,y are the mass and moment of inertia of the wheel ; m, and Iy, luy, lb, are the mass
and moment of inertia of the tire belt. As for tire sidewall damping, translational damping coefficient
Cox, Coy, Cv, @and rotational damping coefficient cy,,Cps,Cs, are introduced. As for tire sidewall stiff-
ness, translational stiffness Kux, Koy, Ko, and rotational stiffness ks, , koo, ks, are introduced. Further,
the interface between the tire belt and road surface is modelled by a contact patch slip model. In this
slip model, the tire-road interface is represented by two first-order differential equations for the lon-
gitudinal and lateral direction

ché‘cx +chgcx =V =X + 16

: L ®)
OcyGey +chgcy = _Vy — Yo+ N +Vxl//b

where o, 0 are the contact patch relaxation length ; {w, <y are the slip in the contact patch ;
Ve, Vey are the slip velocities in the contact patch ; Vy,V, are the slip velocities at the wheel centre
line ; re,n are the effective rolling radius and the loaded rolling radius.

Next, the equations of motion of the tire ring are arranged in order to obtain the natural frequencies
and the natural modes analytically in the condition of non-rotating and with the ground contact. To
study the behaviour of the tire belt with respect to the wheel, the motions of the wheel are constrained
to zero: Xa = Ya = Za = 0and non-rotating leads to QQ=0. Further, the equations of motion are line-
arized by introducing the state variables as small variations additional to the statlonary values which
represent the considered undisturbed state of operation Oa, %o, Vo, Zb, ;/b,@b Wb, Fox, Feys F... From the
Eq. (3),(4) and (5), it appears that the in-plane and out-of-plane dynamics are independent each other.
That means that the in-plane and out-of-plane dynamics of the ring model can be treated separately.
Therefore, the equations of motion are rearranged to describe the in-plane and the out-of-plane dy-
namics of the rigid ring model. The set of equations for the in-plane tire dynamics read:

Mo Xo + CoxXo + KoxXo + CosQZp = Fox

Mo Z + CozZp + KoaZo — CoxQXp = Fez

LoyBh +Cos (G — Ba) + Koo (B — B) = —Feo Fex 6)
Ly +Coo (B — By ) + Koo (B — B) = 0

ch&cx +chEcx = _ib + leobs
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while the out-of-plane tire dynamics are described by

Mo Yo + Coy Yo + Koy Vi + €275 = Fey

bey?b + cbib‘ + Koy 7o + Cop Q7 + 15, Q 1/’/".1, = —nofcy — Tio7bFezo -
loal/b + Coy W + Koy W + Co, Q0 + loyQpp = —toFey
OeyGey +Vodey =—Yo + lios +Villo

in which ro, o, toand Fare the stationary components of the radius, the pneumatic trail and the

vertical force respectively. The expression of the variation of the lug excitation force in the contact
patch read:

I—:”cx = chEcx ’ IF:”cy = Kcygcy ’ 'ECZ = kcsz (8)

where Ko, Key are slip stiffness in the contact patch and k., is the vertical residual stiffness. By sub-
stituting Eqg. (8) into Eq. (6), (7), {«, ey, Lex, oy are eliminated and the equations for the in-plane tire
dynamics give:

MoXo + CoxXo + (Kox + Kex/Gex) Ko — (feoKox/Tex )b = 0

MbZs + CoeZo + (Ko + Kez)Zo = 0

Iayga, + Cbg(ga - gb) + Koo (62 —65) =0

IbygD + Cbg(gn - 62) + (Koo + 15K ex /Tex )b — KnoB — (TeoK ex /T )Xo = 0

and the equation for the out-of-plane tire dynamics are described by

9)

MY + Coy Yo + (Koy + Koy /Tey) Yo — (fio/ ey ) 75 = 0
be?b + be;;b + (kby + ﬁ%Kcy/O-cy + rIOI:czO)j;b - (rIOKcy/O-cy)yb =0 (10)
loc#s + Coy /b + Koy W + (fiotoKey /Ty ) 76 — (toKey /Ty Yo = 0

2.3 Natural frequencies and natural modes

The in-plane and out-of-plane dynamics are independent each other. Therefore, natural frequencies
and natural modes can be derived separately. As for in-plane dynamics, Eq. (9) are described by ma-
trix form

MX+Cx+Kx=0 (11)
X = Yb Zb éa gb]T \
m, O 0 0 Cox O 0 0
0 My 0 0 0 Chz 0 0
M = C= > (12)
0 0 Iy, O 0 0 GCw —Cu
0 0 0y 0 0 —Cu Cbo
kbx + ch 0 0 _ leo ch
O-cx O-CX
0 Koz + Kz 0 0
K =
0 0 Kbo —Kno
Ie ch re2 ch
-2 0 —kpo Koo +— )
L Ocx O |
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In order to treat as eigenvalue problems, matrix forms are translated into

M X+ 1Cx+Kx=0

0 | X
= Av=uw A= S 4 o= " (13)
~MTK -M*C X
where matrix A read:
[ 0 0 0 0 1 0 0 0 |
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
14
koo Ke 0 0 FeoKex _C 0 0 (14)
A= My, Mhoex MyOex My
0 _ktka 0 o -® o 0
mp My
0 R Lo 0o o - S
lay lay lay lay
reOch 0 _ﬁ _@_ reZOch O O Cbi _Qi
IbyO'cx Iay Iby Ibych Iby Iby i

So, the natural frequencies and natural modes of the non-rotating tire with ground contact with respect
to in-plane motion (rotational(in-phase), rotational(anti-phase), vertical and longitudinal) can be ob-
tained by solving the eigenvalue and eigenvector of matrix A.

In similar way, as for out-of-plane dynamics, Eq. (10) can be described by matrix form

Ny+Dy+Sy=0 (15)

y= Yo 70 wol
N=| 0 In 0| D=0 ¢, O > (16)
0 0 Iy, 0 0 Cby
_kby + Kcy ——nOKcy 0 |
ch ch
2
S=| - rIOKcy kby + rIOKcy + hoFeo 0
Oy Oy
t() Kcy rlOtO Kcy k
- - bl//
L ch O-cy _ j

Similarly, matrix forms are translated into
ANy +ADy+Sy=0

0 | y
= BE=ag B{_N_ls _N_lD} gz[d an

where matrix B read:
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0 0 0 1 0 0
0 0 0 0 1 0
O 0 0. ... 0. 0. ... 1.
_ Koy Koy MoKy 0o - 9 0
B Tm  mos Mo T, (19)
rIOKcy _ kby _ rI(Z)K(:y _ Mo I:czo 0 0 _ be 0
beUcy lox bech I ox I ox
toKgy _ hoto Key 3 Koy 0 0 _ Coy
Isz-cy Ibzacy lb, lb, |

Natural frequencies and natural modes with respect to out-of-plane motion (camber, yaw, lateral) can
be obtained by solving the eigenvalue and eigenvector of matrix B.

3. Parameter identification

3.1 Experimental modal analysis result

By the excitation test of non-rotating agricultural tire with ground contact, seven natural frequen-
cies corresponding to rigid mode were confirmed [7]. The natural frequencies and natural modes are
shown in Table 1.

Table 1 : Natural frequencies and natural modes

Natural frequency Natural mode
48.0Hz rotational mode (in-phase)
in-plane motion 68.5Hz rotational mode (anti-phase)
74.5Hz vertical mode
92.0Hz longitudinal mode
35.0Hz camber mode
out-of-plane motion 39.0Hz yaw mode
84.5Hz lateral mode

By using these natural frequencies, the parameters of the rigid ring model are identified as for in-
plane and out-of-plane motion respectively.

3.2 Parameter identification

As for the unknown parameters of the rigid ring model, Cox, Cb:, Coo,Kox, Kbz, Koo, Kex, Ocx, Feo, Kez are
related to in-plane motion and Cyy, Cs,; ,Coy , Koy, Kby , Koy , Koy, 0y, o, to are related to out-of-plane mo-
tion. As the known parameters, m, = 2.39kg : lay = 0.02kgm? : Ip = ly, = 0.012kgm? : lpy =
0.024kgm?, Fo =200N are used. By assuming these unknown parameters, the natural frequencies
can be calculated from the eigenvalue of Eq. (14) and Eq. (18). Therefore, the parameters are deter-
mined based on the optimization method so that the difference between the experimental and the
calculated natural frequencies can be minimized. The error functions are defined as for in-plane and
out-of-plane parameters respectively

fexp_fcal 2
n n

i}
3 fnexp . fncal 2
Error (CbYICb}/ ’ Cbl// ' kby, kb}/ ’ kbl//; KnyO-Cya r|0 ,tO) = Z;L (20)

—~ {fnexp }2

We use a non-linear optimization method, the Downhill Simplex method.

4
Error (Cbx y Chz, Cb@,kbx, kbz y kbe, ch yOcx, leo, kcz) = z (19)
n=1
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4.

Identification results

The identified parameters are shown in Table 2.

Table 2 : Identified parameters

in-plane motion out-of-plane motion
Parameter Unit Value Parameter Unit Value
Cbx , Cbz Ns/m 1.38 % 10° Chy Ns/m 1.21x10°
Cho Nm s/rad | 1.85X 10 Cby s Cby Nm s/rad 6.06
Kbx, Kbz N/m 3.84x10° Ky N/m 2.81x10°
Kbo Nm/rad | 7.67 X 10° Ky , Koy Nm/rad | 1.41%10°
Kex N 1.03 x 10* Key N 6.37 X 10°
Oex m 6.73 %1072 Oy m 1.17%x107
leo m 3.19x 107! o M 2.58%107
Ke: N/m 3.04%x10° to M 1.35%107

Next, Table 3 lists the natural frequencies obtained from the experiment and those predicted by
the calculations for in-plane and out-of-plane motions. Both results show good agreement. From these
results, it is considered that the parameters are identified precisely.

Table 3 : Comparison of natural frequencies

in-plane motion

out-of-plane motion

Experiment
Calculation

48.0Hz
48.9Hz

68.5Hz
68.4Hz

74.5Hz
72.1Hz

92.0Hz
91.6Hz

35.0Hz
36.8Hz

39.0Hz
36.7Hz

84.5Hz
84.5Hz

Furthermore, each of eigenvectors corresponding to the natural frequencies are calculated and the
natural modes are estimated. The calculated eigenvector and estimated natural mode are shown in
Table 4 (in-plane motion) and Table 5 (out-of-plane motion) respectively.

Table 4 : Estimation of natural mode from eigenvector (in-plane motion)

Frequency 48.9Hz 68.4Hz 72.1Hz 91.6Hz
5| % -4.32x10 -6.98x10° 2.49x107" 6.98x10-
§ Zb -1.05x10°!8 -1.61x10™" 9.99x10 -3.05%10°"
§0 0, -1.35x1073 -8.94x10 3.07x10°1® 3.53x10*
i3 6, -9.65x10 5.18x10 1.17x10°"8 -3.09x10*
rotational mode | rotational mode . longitudinal

Mode (in-phase) (anti-phase) vertical mode mode

Table 5 : Estimation of natural mode from eigenvector (out-of-plane motion)

Frequency 36.8Hz 36.7Hz 84.5Hz

= 5 Yo -5.56x10°° -1.22x10°"7 -6.34x10

& 9 7b -2.16x103 -4.56x1071 -3.29x10*

i VA 1.83x107 -2.16x1073 1.72x10
Mode camber mode yaw mode lateral mode

ICSV24, London, 23-27 July 2017
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In Table 4 and Table 5, the natural mode is estimated from the dominant component of eigenvector,
where dominant component are described in bold. For example, the dominant component of eigen-
vector of 72.1Hz is 7, vertical displacement. Therefore, the natural mode of 72.1Hz is estimated ver-
tical mode.

The correspondence of the natural mode estimated from the eigenvector to the natural frequency
coincides with the correspondence of the natural mode to the natural frequency obtained from the
experiment shown in Table 1.

5. Conclusion

In this study, the agricultural tire is modelled as a rigid ring tire model, which is able to describe
tire out-of-plane motion in order to estimate lateral lug excitation force. Then, the linearized equations
of motion of the tire model are derived and the calculation procedure for obtaining the natural fre-
quencies and natural modes is formulated. Furthermore, parameter identification method, where pa-
rameters estimated from the measured natural frequencies and the calculated natural frequencies by
using optimizing method, is proposed. As a result, the natural frequencies and the natural modes
predicted by the calculation using the identified model parameters show good agreement with those
obtained experimentally. So the validity of the proposed optimization method is proved. Parameter
identification of agricultural tire considering out-of-plane motion can be achieved by this technique.
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