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The objective of this study is to clarify the vibration generation mechanism of agricultural ma-

chinery caused by the interaction between the tire lugs and the road surface. It is important to 

investigate the lug excitation force occurring on a rolling agricultural tire in order to clarify the 

vibration generation mechanism. In our previous study, it is confirmed that the dynamic behavior 

of rolling tire is influenced by the vibration characteristics of the tire and only the rigid modes 

can affect the rolling tire behavior. Therefore, we modeled the agricultural tire as a rigid ring tire 

model (SWIFT model) in order to estimate the lug excitation force. As for agricultural tire, out-

of-plane dynamics is also important due to cross-stich lugs. This model can describe not only in-

plane tire dynamics but also out-of-plane tire dynamics. An important aspect of tire modelling is 

the identification of the tire model parameters. As for model parameter identification, few studies 

have been carried out to identify out-of-plane parameters, while many studies were done with 

regard to in-plane parameters. In this research, the equations of motion of the rigid ring model are 

derived and calculation procedure for obtaining the natural frequencies of the rigid ring model is 

formulated. Furthermore, the model parameters are identified by minimizing the difference be-

tween measured and calculated natural frequencies using Downhill Simplex method. The natural 

frequencies and natural modes predicted by the calculation using the identified model parameters 

show good agreement with those obtained experimentally. 

 Keywords: agricultural tire, rigid ring model, identification, lug excitation force 

 

1. Introduction 

In Japan, expansion of farm management scale is promoted in order to perform efficient and stable 

farm management. This tendency increases the opportunity when tractor runs on pavement. Therefore, 

the speedup of tractor is expected. As a result, the speedup causes the increase of vibration and noise. 

Generally, agricultural tires have high and large cross-stitch lug. So, lug excitation force is primary 

cause of vibration during running on pavement. The objective of this study is to clarify the vibration 

generation mechanism caused by tire lugs. It is important to evaluate lug excitation force. 

In our previous study, it is confirmed that the dynamic behaviour of rolling tire is influenced by 

the vibration characteristics and only the rigid modes can affect the rolling tire behaviour [1,2]. 
Therefore, we modelled the agricultural tire as in-plane rigid ring model and the lug excitation forces 

occurring on a rolling tire are identified as for vertical and longitudinal direction [3]. However, as for 

an agricultural tire, lateral direction lug excitation force also generates due to cross-stitch lugs. In 
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order to estimate lateral force, the rigid ring model to describe the out-of-plane tire dynamic is re-

quired. The rigid ring tire model (SWIFT model), which is introduced by Pacejka,H.B is able to 

describe dynamic tire behaviour for in-plane and out-of-plane motion. At that time, an important 

aspect of tire modelling is the identification of the model parameters. As for tire model parameters 

identification, few studies have been carried out to identify out-of-plane parameters, while many 

studies were done with regard to in-plane parameters. In this research, the equations of motion of the 

SWIFT model are derived and the equations of motion are rearranged to describe the in-plane and the 

out-of-plane dynamics. From the rearranged equations of motion, frequency equations are derived 

separately and calculation procedure for obtaining the natural frequencies of the rigid ring model is 

formulated. Furthermore, the model parameters are identified by minimizing the difference between 

measured and calculated natural frequencies using Downhill Simplex method. The natural frequen-

cies and natural modes predicted by the calculation using the identified model parameters show good 

agreement with those obtained experimentally. 

2. Modelling of agricultural tire 

2.1 Rigid ring model 

The rigid ring  model is based on the research of Zegelaar, P.W.A.[4] and Maurice, J.P.[5] and this 

model is referred to as the SWIFT (Short Wavelength Intermediate Frequency Tire) model proposed 

by Pacejka, H.B.[6]. This model represents a pneumatic tire-wheel system and consist of four com-

ponents : the tire tread-band, the tire sidewalls with pressurized air, the wheel and a contact model as 

shown in Fig. 1. The tread-band is modelled as a rigid circular ring and the wheel as a rigid body. 

The tread-band and the wheel are connected through sidewalls with pressurized air three-dimension-

ally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 : Rigid ring model (SWIFT model) 

2.2 Equations of motion 

The wheel has three degrees freedom in translational motion : the vertical, longitudinal and lateral 

displacements and rotational motion about the axes perpendicular to the wheel plane. The equations 

of motion for the three translational motion of the wheel read: 
 

)()()(

)()(

)()()(

babxbabzbabzaaz

babybabyaay

babzbabxbabxaax

xxczzkzzczmF

yykyycymF

zzcxxkxxcxmF













            (1) 

and the equation of motion for rotational motion of the wheel read: 
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The tire ring has six degrees of freedom : three translational motion and three rotational motion. The 

equations of motion for translational motion of the tire ring read: 
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and the equations of motion for rotational motion of the tire ring read: 
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where aaa zyx ,, are wheel (shaft) displacement and a is the small derivation of the angular displace-

ment of the wheel on the top of displacement due to steady speed of rotation   ; zyx FFF ,,  are ex-

ternal force acting on the wheel (shaft) ; ayM  is the drive torque. bbb zyx ,,  are tire belt displacement 

and bbb  ,, are derivation of angular displacement of the tire belt ; czcycx FFF ,, are lug excitation 

force generated at the tire-road interface ; czcycx MMM ,,  are rolling resistance torque acting on the 

tire belt ; am and ayI  are the mass and moment of inertia of the wheel ; bm  and bzbybx III ,,  are the mass 

and moment of inertia of the tire belt. As for tire sidewall damping, translational damping coefficient 

bzbybx ccc ,,  and rotational damping coefficient  bbb ccc ,, are introduced. As for tire sidewall stiff-

ness, translational stiffness bzbybx kkk ,,  and rotational stiffness  bbb kkk ,,  are introduced. Further, 

the interface between the tire belt and road surface is modelled by a contact patch slip model. In this 

slip model, the tire-road interface is represented by two first-order differential equations for the lon-

gitudinal and lateral direction  
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where cycx  ,  are the contact patch relaxation length ; cycx  ,  are the slip in the contact patch ;  

cycx VV , are the slip velocities in the contact patch ; yx VV ,  are the slip velocities at the wheel centre 

line ; le rr ,  are the effective rolling radius and the loaded rolling radius. 

Next, the equations of motion of the tire ring are arranged in order to obtain the natural frequencies 

and the natural modes analytically in the condition of non-rotating and with the ground contact. To 

study the behaviour of the tire belt with respect to the wheel, the motions of the wheel are constrained 

to zero: 0 aaa zyx and non-rotating leads to 0 . Further, the equations of motion are line-

arized by introducing the state variables as small variations additional to the stationary values which 
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Eq. (3),(4) and (5), it appears that the in-plane and out-of-plane dynamics are independent each other. 

That means that the in-plane and out-of-plane dynamics of the ring model can be treated separately. 

Therefore, the equations of motion are rearranged to describe the in-plane and the out-of-plane dy-

namics of the rigid ring model. The set of equations for the in-plane tire dynamics read: 
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while the out-of-plane tire dynamics are described by 
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in which 00 , le rr , 0t and 0czF are the stationary components of the radius, the pneumatic trail and the 

vertical force respectively. The expression of the variation of the lug excitation force in the contact 

patch read: 
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where cycx KK ,  are slip stiffness in the contact patch and czk  is the vertical residual stiffness. By sub-
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and the equation for the out-of-plane tire dynamics are described by 
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2.3 Natural frequencies and natural modes 

The in-plane and out-of-plane dynamics are independent each other. Therefore, natural frequencies 

and natural modes can be derived separately. As for in-plane dynamics, Eq. (9) are described by ma-

trix form 
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In order to treat as eigenvalue problems, matrix forms are translated into 
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where matrix A  read: 

 






















































by

b

by

b

cxby

cxe

by

b

ay

b

cxby

cxe

ay

b

ay

b

ay

b

ay

b

b

bz

b

czbz

b

bx

cxb

cxe

cxb

cx

b

bx

I

c

I

c

I

Kr

I

k

I

k

I

Kr

I

c

I

c

I

k

I

k
m

c

m

kk
m

c

m

Kr

m

K

m

k

A









000

0000

000000

00000

10000000

01000000

00100000

00010000

2
00

0
     (14) 

 

So, the natural frequencies and natural modes of the non-rotating tire with ground contact with respect 

to in-plane motion (rotational(in-phase), rotational(anti-phase), vertical and longitudinal) can be ob-

tained by solving the eigenvalue and eigenvector of matrix A . 

In similar way, as for out-of-plane dynamics, Eq. (10) can be described by matrix form 
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Similarly, matrix forms are translated into 
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Natural frequencies and natural modes with respect to out-of-plane motion (camber, yaw, lateral) can 

be obtained by solving the eigenvalue and eigenvector of matrix B . 

3. Parameter identification 

3.1 Experimental modal analysis result 

By the excitation test of non-rotating agricultural tire with ground contact, seven natural frequen-

cies corresponding to rigid mode were confirmed [7]. The natural frequencies and natural modes are 

shown in Table 1.  

Table 1 : Natural frequencies and natural modes 

 Natural frequency Natural mode 

in-plane motion 

48.0Hz rotational mode (in-phase) 

68.5Hz rotational mode (anti-phase) 

74.5Hz vertical mode 

92.0Hz longitudinal mode 

out-of-plane motion 

35.0Hz camber mode 

39.0Hz yaw mode 

84.5Hz lateral mode 
 
By using these natural frequencies, the parameters of the rigid ring model are identified as for in-

plane and out-of-plane motion respectively.  

3.2 Parameter identification  

As for the unknown parameters of the rigid ring model, czecxcxbbzbxbbzbx krKkkkccc ,,,,,,,, 0,   are 

related to in-plane motion and 00 ,,,,,,,,, trKkkkccc lcycybbbybbby   are related to out-of-plane mo-

tion. As the known parameters, bm 2.39kg : ayI 0.02kgm2 :  bzbx II 0.012kgm2 : byI

0.024kgm2， 0czF 200N are used. By assuming these unknown parameters, the natural frequencies 

can be calculated from the eigenvalue of Eq. (14) and Eq. (18). Therefore, the parameters are deter-

mined based on the optimization method so that the difference between the experimental and the 

calculated natural frequencies can be minimized. The error functions are defined as for in-plane and 

out-of-plane parameters respectively 
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We use a non-linear optimization method, the Downhill Simplex method. 
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4. Identification results 

The identified parameters are shown in Table 2. 

 

Table 2 : Identified parameters 

in-plane motion out-of-plane motion 

Parameter Unit Value Parameter Unit Value 

bzbx cc ,  Ns/m 1.38×103 byc  Ns/m 1.21×103 

bc  Nm s/rad 1.85×10  bb cc ,  Nm s/rad 6.06 

bzbx kk ,  N/m 3.84×105 byk  N/m 2.81×105 

bk  Nm/rad 7.67×103  bb kk ,  Nm/rad 1.41×103 

cxK  N 1.03×104 cyK  N 6.37×102 

cx  m 6.73×10‐2 cy  m 1.17×10‐3 

0er  m 3.19×10‐1 0lr  M 2.58×10‐3 

czk  N/m 3.04×105 0t  M 1.35×10‐3 

 

Next, Table 3 lists the natural frequencies obtained from the experiment and those predicted by 

the calculations for in-plane and out-of-plane motions. Both results show good agreement. From these 

results, it is considered that the parameters are identified precisely. 

 

Table 3 : Comparison of natural frequencies 

 in-plane motion out-of-plane motion 

Experiment 48.0Hz 68.5Hz 74.5Hz 92.0Hz 35.0Hz 39.0Hz 84.5Hz 

Calculation 48.9Hz 68.4Hz 72.1Hz 91.6Hz 36.8Hz 36.7Hz 84.5Hz 

 

Furthermore, each of eigenvectors corresponding to the natural frequencies are calculated and the 

natural modes are estimated. The calculated eigenvector and estimated natural mode are shown in 

Table 4 (in-plane motion) and Table 5 (out-of-plane motion) respectively.  

 

Table 4 : Estimation of natural mode from eigenvector (in-plane motion) 

Frequency 48.9Hz 68.4Hz 72.1Hz 91.6Hz 

E
ig

en
v
ec

to
r 

bx~  -4.32×10-4 -6.98×10-6 2.49×10-19 6.98×10-5 

bz~  -1.05×10-18 -1.61×10-19 9.99×10-4 -3.05×10-19 

a
~

 -1.35×10-3 -8.94×10-4 3.07×10-18 3.53×10-4 

b
~

 -9.65×10-4 5.18×10-4 1.17×10-18 -3.09×10-4 

Mode 
rotational mode 

(in-phase) 
rotational mode 

(anti-phase) 
vertical mode 

longitudinal 

mode 

 

Table 5 : Estimation of natural mode from eigenvector (out-of-plane motion) 

Frequency 36.8Hz 36.7Hz 84.5Hz 

E
ig

en
 

v
ec

to
r by~  -5.56×10-6 -1.22×10-17 -6.34×10-4 

b
~  -2.16×10-3 -4.56×10-15 -3.29×10-4 

b~  1.83×10-5 -2.16×10-3 1.72×10-4 

Mode camber mode yaw mode lateral mode 
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In Table 4 and Table 5, the natural mode is estimated from the dominant component of eigenvector, 

where dominant component are described in bold. For example, the dominant component of eigen-

vector of 72.1Hz is bz~  vertical displacement. Therefore, the natural mode of 72.1Hz is estimated ver-

tical mode. 

The correspondence of the natural mode estimated from the eigenvector to the natural frequency 

coincides with the correspondence of the natural mode to the natural frequency obtained from the 

experiment shown in Table 1.  

5. Conclusion 

In this study, the agricultural tire is modelled as a rigid ring tire model, which is able to describe 

tire out-of-plane motion in order to estimate lateral lug excitation force. Then, the linearized equations 

of motion of the tire model are derived and the calculation procedure for obtaining the natural fre-

quencies and natural modes is formulated. Furthermore, parameter identification method, where pa-

rameters estimated from the measured natural frequencies and the calculated natural frequencies by 

using optimizing method, is proposed. As a result, the natural frequencies and the natural modes 

predicted by the calculation using the identified model parameters show good agreement with those 

obtained experimentally. So the validity of the proposed optimization method is proved. Parameter 

identification of agricultural tire considering out-of-plane motion can be achieved by this technique. 
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