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Increased scientific and societal concern about the effects of underwater sound on marine life 

have recently been recognised through the introduction of several international initiatives and 

international regulation. Monitoring of deep-ocean low-frequency sound is challenging, but data 

have been reported for the Northeast Pacific Ocean and Indian Ocean in recent publications. The 

CTBTO (Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organiza-

tion) has made available data from their deep-ocean hydro-acoustic stations, so that researchers 

may examine the existence of trends and features in the recorded sound. In the case of some of 

the stations, the data cover more than ten years of recordings. In this paper, we present trend 

analysis of data from one CTBTO observatory at Cape Leeuwin (Australia) to examine the rate 

and magnitude of change in low frequency sound (5-105 Hz) over the period 2003 - 2015. The 

analysis involves the application of regression to percentile levels in limited frequency bands and 

employs bootstrap resampling as a non-parametric approach for the necessary quantification of 

the uncertainties associated with the estimated trends. Results obtained by linear and more com-

plex regression models are compared and the effect of aggregating data over various time intervals 

is also examined. Finally comparisons are drawn between trends observed in adjacent frequency 

bands. 
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1. Introduction 

In an era where human activity impacts greatly the planet’s environment and bio-diversity, moni-

toring of environmental factors that quantify this effect becomes more necessary than ever. Over the 

past decades increasing demand for energy together with international commerce and technological 

growth have dramatically contributed to the increase of off-shore activity and the pollutants it pro-

duces.  

Human off-shore activity is commonly related to transportation (shipping), geo-physical surveys 

for gas and oil extraction, and infrastructure construction (pile-driving), all of which contain high-

energy low-frequency sound sources. Over the last century shipping traffic has grown substantially 

[1], [2], [3] and so has the size of the ships themselves [4]. Though each individual ship is not in itself 

a high-amplitude source, their large and increasing number has the potential to raise ocean noise 

levels. At the same time, sound produced by oil and gas exploration and production as well as the 

construction and operation of infrastructure for renewable energy sources is continuously increasing 

[5], [6], [7].  

Since noise is a form of pollution that has an impact on marine life [8], [9], [10], [11], it is reason-

able to try to quantify the human contribution to the existing ocean noise levels. Working towards 

this aim, the European Marine Strategy Framework Directive [12] has identified noise as an important 

factor for the assessment of the oceans’ environmental status. Furthermore, the Commission Decision 
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of 2010 [13] describes indicators for the assessment of impulsive and low frequency continuous sound 

for the identification of events and trends at low-frequency bands where human activity could poten-

tially have greatest effect.  Analysis of trends in ocean noise requires the collection and processing of 

large datasets over long time periods. Emerging technologies like sensor networks and tools for big 

data analysis have made possible the acquisition and thorough examination of large data volumes. 

However, the deployment and maintenance of underwater acoustic equipment still involves prohibi-

tive costs making long term monitoring difficult to implement.  

The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) have created a global net-

work of sensors which includes 11 hydro-acoustic stations located in all the major oceans [14]. 

CTBTO have made available data from their stations which consist of triads of hydrophones placed 

in the ocean’s deep-sound-channel with inter-separation of two kilometres. The data consist of low 

frequency (250 Hz sampling rate, 24 bit depth) continuous recordings of sound pressure and in some 

cases span over more than a decade. Hence they are suitable for long term trend analysis and have 

been the source of interest for several studies in the recent past [15], [16], [17], [18].   

This paper focuses on the examination of data collected by one of the three hydrophones at CTBTO 

station H01W at Cape Leeuwin, Australia, for the identification of trends over 12 years (2003 - 2015). 

The sensor depth for station H01W is 1055 m in a water column of 1558 m depth. One of the main 

questions such trend analysis is intended to address is whether deep-ocean noise has increased or 

decreased with time. Although this question appears to be straightforward, in practice long-term 

trends are difficult to quantify accurately because of the presence of large seasonal variations and 

other effects in the data. In order to identify possible changes and compute the uncertainties associated 

with the estimates, two different regression models are considered and confidence intervals for each 

outcome are constructed using bootstrap resampling [19], [20] of the residuals from the regression. 

In the following sections, the data processing techniques are briefly described and emphasis is given 

to the comparison of the results obtained by the different models. 

2. Method 

The period of interest for the presented trend analysis covered 12 years between 01/01/2003 and 

01/01/2015. The abundance of data provided allowed great flexibility in the approach for the analysis. 

However, at the same time the sheer size of the datasets made the extraction from the database, stor-

ing, handling and processing of the data a quite challenging task.  Hence the reduction of raw data to 

aggregated values was considered necessary. The data samples were scaled using their accompanying 

calibration factors provided by CTBTO and an inverse filter of the recording system’s frequency 

response was applied to eliminate the effect of the acquisition chain on the frequency response of the 

recordings. The broadband signal was then filtered in 5 frequency bands (5-115 Hz, 10-30 Hz, 40-60 

Hz, 56-70 Hz, 85-105 Hz) and the squared pressures were averaged over 10 min intervals and trans-

formed into dB re 1 μPa2.  The outcome for the 5-115 Hz band is presented in Figure 1. 

Finally, any outliers, i.e. levels greater than 20 dB from the average of the entire time series, were 

removed to allow better examination of the underlying trend in the data. 

Even though this procedure produced much more manageable datasets it was considered that the 

intended trend analysis would not be heavily influenced by further data reduction as long as the ag-

gregation intervals would not interfere with the seasonal characteristics in the time series. Inspection 

of the seasonal patterns of the data shown in Figure 1 revealed that further reduction to a daily value 

would not have a major impact on the trend estimation given the still significant sample size.  

Together with the daily averages the 1st, 5th, 50th, 90th, and 99th daily percentiles (P1, P5, P50, P90 

and P99) were also computed based on the previously calculated 10 min averages. These summaries 

would allow examination of parts of the time series related to ambient (P1, P5) and higher (P90 and 

P99) noise levels. At the same time the median would be a more representative parameter than the 

mean for the middle part of the distribution considering the skewness that can be inferred by exami-

nation of Figure 1.  
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Figure 1, 5-105 Hz band 10 min averages between 01/01/2003 and 01/01/2015. 

A very common approach to estimating long term trends is to fit a straight line (Linear Model) and 

use the gradient as an estimator for the long term trend. Then the associated confidence interval for a 

stated confidence level (95 % or 99 %) can be evaluated using Gaussian statistics under the assump-

tion that the residual errors associated with the fitted straight line are normally distributed. However, 

the Linear Model approach is somewhat simplistic for the examined data as it does not take explicit 

account of seasonal variations. At the same time it is statistically unsound because the data are serially 

correlated and the residual errors from the model depart appreciably from normality.  

An alternative approach more suitable for the examined data involves a class of regression models 

incorporating seasonal factors (Seasonal Model) used to describe annual periodic trends in addition 

to an underlying long term trend. This approach significantly improves the regression fit and leads to 

lower residual errors that appear more normally distributed around zero. Still, however, the conditions 

for the Central Limit Theorem are not satisfied since the data are serially correlated and so no as-

sumption of normality for the sampling distribution of the estimator can be made. Hence we use a 

non-parametric approach, specifically bootstrap resampling, to estimate confidence intervals associ-

ated with the gradient.  The described process involves repeated resampling of the residual errors to 

generate new datasets that can be fitted with regression models in order to establish the sampling 

distribution for the estimator. Finally the middle 95 % (or 99 %) of the sampling distribution consti-

tutes the required confidence interval.  

Regression with bootstrap resampling of size 10 000 was applied to P50 levels for each of the 5 

frequency bands using Linear and Seasonal Models in order to examine the differences in the obtained 

trend estimates and their associated confidence intervals. Also, it was considered interesting to inves-

tigate the impact of aggregating over longer time intervals. This was achieved by application of the 

same procedure to weekly and monthly P50 values derived from the initial 10 min windowed dataset.  

3. Results and Discussion 

The first step of the performed trend analysis was the application of least-squares regression using 

both Linear and Seasonal Models to the daily, weekly and monthly P50 values and examination of the 

residual errors. The difference between the two model fits is illustrated in Figure 2 where the regres-

sions to the daily P50 values for the 10-30 Hz frequency band are shown. Simple inspection of the 
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graph reveals that the Seasonal Model fits the data much better and so it is expected to present sig-

nificantly lower residual errors.  

The residual errors were collected and categorised by year in order to inspect each year’s contri-

bution to the overall distribution that was then used as the population for the bootstrap resampling. 

The upper two plots of Figure 3 present boxplots of the annual residual error distributions while the 

lower graph shows the resulting overall residual error distributions for the two models. As inferred 

from Figure 2, the Seasonal Model, which incorporates annual seasonalities, appears to yield a much 

narrower residual error distribution that is also more symmetrical. Both histograms have a high peak 

at zero, however the Linear Model’s distribution is significantly more skewed with a higher spread 

around the main peak. This implies a poorer fit and its effects are expected to appear in the estimate 

of the slope as well as the associated confidence interval.  

 

 

Figure 2, Daily P50 10-30 Hz band data with Seasonal and Linear regression models fitted. 

 

Figure 3, Annual and overall residual error distributions from applied regressions on the 10 – 

30 Hz frequency band. 
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The distributions of Figure 3 were used as populations from which samples were drawn with re-

placement in order to form new datasets on which regression was applied. This procedure was re-

peated 10 000 times in order to allow a healthy sample size for the sampling distribution of the esti-

mated trend. The resulting values of the rate of change in dB/year are presented in Figure 4.  

 

 

Figure 4, Computed slopes for the 10-30 Hz frequency band from bootstrap resampling. 

Two important features are obvious in the above graph. The first is a difference in the mean values 

around which each dataset is spread. Specifically the Linear Model appears to systematically give 

lower estimates of the trend than the Seasonal Model. This happens because the Linear Model does 

not describe adequately the deterministic part of the data and exhibits a much worse fit than the Sea-

sonal Model, as the inspection of the residual errors also showed. The second characteristic is a dif-

ference in the spread with the Linear Model’s estimates presenting higher variance. This is inherited 

from the higher spread in the initial regression’s residual errors.  

Using the central 95 % of the estimated slope distributions the 95 % confidence interval for each 

model’s slope estimate was constructed. Then the magnitude of change was computed by multiplying 

by the number of years over which the regression was applied. The same procedure was performed 

for weekly and monthly P50 values and the resulting estimates for the 10-30 Hz frequency band are 

shown in Figure 5.  

Figure 5 shows that as the aggregating interval increases (from daily to monthly) the less precise 

the estimates become. In time series analysis it is common practice to use averaging or similar aggre-

gation techniques as a way of removing noise and smoothing data. However such techniques must be 

used carefully as smoothing can hide important characteristics of the data and in combination with 

the reduction of the sample size can eventually impact heavily the uncertainties for the estimated 

parameter. This effect is exaggerated when models that do not describe the data accurately are used 

as we see by comparing the estimates based on the monthly P50 values. Moreover, the discussed offset 

between the estimates achieved by the two models appears for all different aggregation intervals while 

the precision of the Seasonal Model is always higher.  

In order to better understand the importance of choosing an appropriate model and aggregation 

interval for the estimation of long term trends one should compare the results obtained by the Linear 

Model using monthly P50 values to those provided by the Seasonal Model based on daily values. It is 

clear that based on the same dataset the conclusions drawn by the two approaches can be quite dif-

ferent since for the Linear Model the null hypothesis that there is no significant trend in the data 
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cannot be rejected while the opposite happens when the Seasonal Model is considered. That is be-

cause zero is included in the 95 % confidence interval for the monthly based Linear Model while this 

is not the case when a daily based Seasonal Model is considered. 

 

 

Figure 5, Confidence intervals for the estimated slopes for the 10-30 Hz frequency band using the 

two regression models for three different aggregation times. 

Finally, application of the described trend analysis to band-limited frequency intervals allowed the 

examination of possible changes in the frequency content of the noise. The results are summarised in 

Table 1. 

Table 1, Estimated magnitude of change in dB re 1μPa2 between 2003 and 2015 at 5 frequency bands 

using both regression models. All presented estimates are based on daily P50 levels. 

Frequency 

Band (Hz) 

Linear Model Seasonal Model 

Lower 

Limit 

 

Slope  

Estimate 

Upper 

Limit 

Lower 

Limit 

 

Slope  

Estimate 

Upper 

Limit 

5 - 105 -1.49 -1.26 -1.03 -1.13 -0.97 -0.82 

10 - 30 -1.26 -1.00 -0.73 -0.80 -0.65 -0.49 

40 - 60 -1.76 -1.56 -1.36 -1.49 -1.35 -1.21 

56 - 70 -1.01 -0.80 -0.60 -0.76 -0.61 -0.45 

85 -105 -0.09 0.08 0.26 0.04 0.20 0.36 

 

Table 1 shows a common decrease in all frequency bands apart from the 85 -105 Hz band where 

a marginal increase is seen. The most significant level decrease appears in the 40 - 60 Hz band which 

is commonly associated with shipping noise. An interesting observation is that the Linear Model’s 

systematic underestimation of the slope failed to identify the increase in the 85 -105 Hz  frequency 

band as statistically significant yielding a Type II error while the increase was successfully detected 

by the Seasonal Model.   
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4. Conclusions 

Trend analysis of underwater low frequency noise recorded by CTBTO station H01W at Cape 

Leeuwin was performed using a Seasonal Model incorporating annual seasonal trends and a less 

complex Linear Model.  Then the uncertainties associated with each estimate were computed using 

bootstrap resampling of the residual errors from the regressions. The results were compared in order 

to explore the reliability of the estimates that can be achieved. Moreover the impact of aggregating 

data over longer time intervals on the precision of the estimated trends was discussed and possible 

changes in the frequency content of noise between 2003 and 2015 were explored. 

It was shown that estimates of long term trend can be more reliable when seasonal characteristics 

of the data are incorporated in the regression model. Precision decreases as the data sample size de-

creases something that gets even more exaggerated by the utilisation of the simple Linear Model. On 

the other hand, use of more appropriate models with temporal resolution that maintains the original 

data’s seasonal characteristics provides substantially improved estimates. From the described analysis 

it was concluded that daily P50 noise levels recorded at Cape Leeuwin decreased between 2003 and 

2015 at all but one of the examined frequency bands with the 40-60 Hz band presenting the highest 

change.  

Computation of the uncertainties associated with estimates is a fundamental requirement for sta-

tistical inference as it provides a degree of confidence for the precision of that estimate. Neglecting 

this step leads to estimates with no indication of their quality which can potentially lead to wrong 

conclusions. This can have serious implications if these conclusions are then used as the basis for 

further actions including policy making decisions. 
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