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1. INTRODUCTION

Effecis of the shear and the rotatary inertia on the dynamical behaviour of structures is a widely siudied problem.
Theories including these effects valid for beams and plates were derived respectively by Timoshenko [1] and
Mindlin [2]. Shear effects in shells were studied by many authors. Soedel [3] has applicd it on the vibrations of
a cylindrical shell in order to explain the principle of the shear effect inclusion in shell theories of lower order.
His model relies on Donnell theory. Shirakawa [4] did the same but reposing on Flugge theory, In the present
paper, shear and rotatory inenia effects are added on Fligge theory and the newly created theory is referred
as Flugge-Timoshenko theory. The paper studies influences of mentioned effects on the propagation of elastic
waves in the cylindrical shell. Resulis for wavenumbers and intensities are presenied graphically.

2. DISPERSION EQUATION

Application of the Timoshenko principle of the inclusion of shear effecis in lower order theories for shells
consists 10 take angles of seclion rolavon as independant variables. The displacement field valid for wave
motions in the cylindrical shell is therefore writen as
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where ¢ and 5 denote non-dimensional coordinaies along axial and circumferential direction of cylindrical shell
while y stands for the non-dimensional wavenumber in the shell
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Quantities u, v and w denote displacements in the axial, circumferential and lateral direction of the shell referent
surface which is defined by the shell median radius a. ©, and 8, stand for angles of section rotation with the
dimension of length

9;=8a [m] O, =6 [m] , (3)

which is done in order to simplify later calculations. Application of the marrix differential operator valid for a
Fligge-Timoshenko theory on the displacement feld (1) gives the equation of the dynamical equlibrium for a
cylindrical shell

Loy = {@'m . f4)

Proc..O.A. Vol 15 Part 3 (1993) 747




Proceedings of the Institute of Acoustics

STRUCTURAL INTENSITY IN SHELLS INCLUDING SHEAR EFFECTS

where componenis of the matrix [L] are given by following expressions
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with {2 and 5* denoting non-dimensional frequency and shell thickness parameter respectively
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Shear parameter ¢ is 1aken to be 5/6 which is derived from the Donnell theory. In fact the estimation of the shear
parameler is a great problem in the derivation of higher order flexural theories for shells. For example, Flligge
theory describes fairly good curvamre effecis but it does not give explicil expresstons for stresses. Donnel]
theory gives these expressions in the explicit form and the corresponding shear parameter equals 5/6 which
stands for both directions, axial and circumferential, In the reality, shear paramelers for these directions should
differ. In the equation (4) vectors {{/} and {Q*™} denote vectors of complex displacement amplitudes and
surface loads
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The attention is here given exclusively 10 radial loads which is evident from the composition of the load vector
{@*™}. For an empty shell this vecior equals zero, If the shell is flled with an aconstic Anid the term
ga™ (£, m,t) reads [6]

h . . 2l Jn(n
m -1 _ i(xnewt) = 28181 Ju(n}
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where h is the shell thickness, py, p. denote fluid and shell densities, J, (x}, J/(x) denote Bessel function

of order n and its first derivative with respect of the non-dimensional radial wavenuber in fuid « = k.
Non-dimensional wavenumbers are related by Lhe equation {6)

X'+t = (220)° (9)
3l
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with ¢;; dencting the sound velocity in the fluid. One obiains wavenumbers in the shell and in the fAuid as
solutions of a dispersion equation for the shell which is

del([L])=0 (10)

and the one for the fluid (9). The nature of Bessel functions obliges the usage of numerical procedures [3).
Insertion of calculaled wavenumbers in the equation {4) gives displacement amplitude ratios

==e_-= Ty=9-y' (11)
w

which are used later in expressions for the structural inlensity.

Expressions for the axial component of the structural intensity are given here in their final form, written in terms
of displacements. Total intensity in the farfield of the cylindrical shell equals [7)
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were <% denotes space averaging, Apm, Ay, A, denote contribution due Lo membranous, flexural and curvature
effecis in the shell. For circumferential modes superior or equal o 1, n > I:
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Breathing mode represents a special case with torsional branches (denoted by the subscript "0;t" in expressions
given bellow) uncoupled from other branches of Lhe dispersion curve
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3. DISCUSSION OF RESULTS AND CONCLUSIONS

The Flugge-Timoshenko theory introduces two fundamenial differences as regards to lower order theories. The
first one is the existence of fifth branch of the dispersion curve for an empty shell and the second one is
the existence of the cut-on frequency for cach branch of the dispersion curve. One should keep in ming that
dispersion curves for lower order theories possess four branches and that only three of them cut the frequency
axe. Thess fundamental novelties are fairly well represenied in the figure 1.

Other differences between results of presenied theory and those of lower order are of purely numerical nature.
All remarks given bellow are issued from the comparison between results given by Fligge (F) and Flilgge-
Timoshenko (F-T) theory valid for a circular stell shell of the thickness 1o radius ratig of 1/10.

1. Cut-on frequencies: For all branches of the dispersion curve for the empty shell, F-T cut-on frequencies
are inferiour 10 those valid for F theory. The only exception is the cut-on frequency of the third branch for
the breathing mode. Differences raise for higher circumferential modes and relative differences are much
bigger for the first branch and the third branch when compared with the second one {for a given mode one
branch is prior to some other if it cuts the frequency axe befare that other branch).

2. Wavenumbers: The biggest divergences for wavenumbers are observed in narmow frequency intervals
following cut-on frequencies, where the "fresh™ real branch of the dispersion curve ascends very rapidly
(see fig. 2). For the siabilized real branch, wavenumbers start o diverge more than 5{%) for wavelengths
inferiour to the shetl mean radins.

3. Structural intensity: The repantition of structural intensity in membranous, flexural and curvature contri-
bution defined by Pavi¢ in [7] facilitates the observation of a particular real branch of the dispersion curve.
From figures 3. and 4. one can sce that the structural intensily is either of dominanty membranous or
ficxural nature, Such a repanition siays the same for both theories. Notable differences between total values
of structural intensity exist in the narrow frequency interval following the cul-on frequency of a particular
branch, as it was already remarked for wavenumbers. In the frequency domain where the membranous com-
ponent of the inlensity is dominant, two theories give practically the same values. The sitation changes
radicaliy for frequencies where the membranous contribution stants 1o descend abrupily. Relative differences
of 5(%] appear already at wavelengths which equal wiple mean shell radius. For wavelengths which equal
the mean shell radius, F-T values of the structural intensity are almost 50 [%] lower than F values.

Two principal conclusions can be established from remarks given above. Firstly, Fligge-Timoshenko theory
cancels the paradox of the purely imaginary branch existing in the high frequency domain, which is valid for
lower order theories. Physically, the consequence is much betier description of nearfield effects in the high
frequency domain, Secondly, 8 domain of validity for lower order theories could be established. If the criterium
of validity is the wavenumber than lower order theories are sufficiently precisz for frequencies which do not pass
beyond the limit frequency for which the corresponding wavelength of a particular real branch equals the mean
radius of the cylindrical shell. The criterium of structural intensity is much more severe. The limit wavelength
is here the one which equals triple mean radius of the cylindrical shell.
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FIGURES

Figures given bellow are valid for the stee] shell of the thickness 1o mean radius ration of 1/10. All quamities *
represented by these diagrams are results of Fliigge-Timoshenko theory. Figure 1 represents branches of the
dispersicn curve for the breathing mode {n = 0) valid for the emply shell. Five branches figure on the 3D
diagram showing the dependance of the complex wavenumber of the non-dimensional frequency. Figure 2
represents branches of the dispersion curve for the mode n = 1 valid for the shell filled with water, Branches
are presented in the 3D diagram whose axes are as those in figure I: real and imaginary part of the wavenumber
and the non-dimensional frequency. Figures 3 and 4 represent membranous and fiexural contribution to the
structural intensity in the farfield for the shell filled with water, for the circumferential mode n = 1. Both
contributions are presented in 2D disgram where the horizontal axe represents non-dimensional frequency.
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Fig. 1. Dispersion curve, emply steel shell, mode n=0

Fig. 1. Dispersion curve, sieel/water, mode n
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Fig. 3. Membranous contribution, steel/water, mode n=1
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Fig. 4. Flezural contribution, steel/water, mode n=1
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