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1. INTRODUCTION

Effects of the shear and the rotatory inertia on the dynamical behaviour of structures is a widely studied problem.

Theories including these effects valid for beams and plates were derived respectively by 'l'tmoshenko [l] and

Mindlin [2]. Shear efl‘ects in shells were studied by many authors. Soedel [3] has applied it on the vibrations of

a cylindrical shell in order to explain the principle of the shear effect inclusion in shell theories of lower order.

His model relies on Donnell theory. Shir-akawa [4] did the ante but reposing on Fingge theory. In the present

paper‘ shear and rotatory inertia effects are added on Fltlggc theory and the newly created theory is referred

as Flugge-Timoshenko theory. The paper studies influences of mentioned effects on the propagation of elastic

waves in the cylindrical shell. Results for wavcnumbcrs and intensities are presented graphically.

2. DISPERSION EQUATION

Application of the 'l'tmoshenko principle of the inclusion of shear effecrs in lower order theories for shells

consists to take angles of section rotation as independant variables. The displacement field valid for wave

motions in the cylindrical shell is therefore when as
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where 5 and 1, denote non-dimensional coordinates along axial and circumferential direction of cylindrical shell
while 1 stands for the non-dimensional wavenumber in the shell
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Quantities u. u and w denote displacements in the axial. circumferential and lateral direction of the shell referent

surface which is defined by the shell median radius a. e, and 9, stand for angles of section rotation with the

dimension of length

9, = a,.: [m] e, = an [m] , (3)

which is done in order to simplify law calculations Application of the matrix differential operator valid for a

Flume-Timeshenlto dreary on the displacement field (1) gives the equation of the dynamical equlihrium for a

cylindrical shell

[LllUl = i0'") . (4)
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where components of the matrix [L] are given by following expressions
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with n and 13‘ denoting non-dimensional frequency and shell thickness parameter respectively
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Shear parametere is taken to be 5/6 which is den'ved from the Donnell theory, In fact the estimation of the shear
parameter is a great problem in the derivation of higher order flexural theories for shells. For example, Flngge
theory describes fairly good curvature effects but it does not give explicit expressions for stresses. Donnell
theory gives these expressions in the explicit form and the corresponding shear parameter equals 5/6 which
stands for both directions. axial and circumferential. In the reality. shear parameters {or these directions should
diffs. In the equation (4) vectors ([1) and (0”) denote vectors of complex displacement amplitudes and
surface loads
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The nutrition is here given exclusively to radial loads which is evident from the composition of the load vector
{Q""). For an empty shell this vector equals zero. If the shell is filled with an acoustic fluid the tam
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where h is the shell thickness. p,. p, denote fluid and shell densities. J,.(x). J,’_(x) denote Bessel function
of order n and its first derivative with respect of the non-dimensional radial wavenuber in fluid x = kL-a.
Non-dimensional wavenumbets are related by the equation [6]

x=+~* = $9)“ (9)
1.
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with c].- denoting the sound velocity in the fluid. One obtains wavenumbers in the shell and in the fluid as

solutions of a dispersion equation for the shell which is

mat]; = o . (10)

and the one for the fluid (9). The nature of Bessel functions obliges the usage of numerical procedures [9].

lnsertion of calculated wavenumbers in the equation (4) gives displacement amplitude ratios
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which are used later in expressions for the structural intensity.

Expressions for the axial component of the structural intensity are given here in their final form. wriuen in terms

of displacements. Total intensity in the farfield of the cylindrical shell equals [7]

c _ _ _
I:=';(<Am>o+<A/>o+<lie>o+ (12)

Al N

+ z Z<fi>m +<A_,>..;m+ «Ii—cm”)
m=tn=t

were «3» denotes space averaging. X... , X]. K: dcnote conu'ibution due to membranous. flexural and curvautre

efiecls in_ the shell. For circumferential modes superior or equal to l. n z 1:
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Breathing mode represents a special case with torsional branches (denoted by the subscript "0;l" in expressions

given bellow) uncoupled from other branches of the dispersion curve
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3. DISCUSSION OF RESULTS AND CONCLUSIONS

The Flllgge-Trmoshenko theory introduces two fundamental differences as regards to lower order theories The
first one is the existence of fifth branch of the dispersion curve for an empty shell and the second one is
tlte existence of the cut-on frequency for each branch of the dispersion curve. One should keep in mind that
dispersion cttrves for lower order theories possess four branches and tltat only three of them cut thefrequency
axe. These fundamental novelties are fairly well represented in the figure 1.
Other differences between results of presented theory and those of lower order are of purely numerical nature
All remarks given bellow are issued from the comparison between resulLs given by Flugge (F) and Fittgge-
‘l’rmoshenko ('F-T) dreary valid for a circular stell shell of the thickness to radius ratio of l [10.

l. Cut-an frequencis: Forall branches of the dispersion curve for the empty shell. F-T euton frequencies
are inferiour to those valid for F theory. The only exception is the cut-on frequency of the third branch for
the breathing mode. Differences raise for higher circumferential modes and relative differences are much
bigger for the first branch and the third branch when compared with the second one (for a given mode one
branch is prior to some other if it cuts the frequency axe before that other branch).

2. Wavenumbers: The biggest divergences for wavenumbers are observed in narrow frequency intervals
following cut-on frequencies. where the "fresh" real branch of the dispersion curve ascends very rapidly
(see fig. 2). For the stabilized real branch. wavcnumbers start to diverge more than 51%] for wavelengths

inferiour to the shell mean radius.

3. Structural intensity: The repartition of structural intensity inmembranous. flexural and curvature contri-
bution defined by Pavié in [7] facilitates the observation of aparticular real branch of the dispersion curve.
From figures 3. and 4. one can see that the structural intensityis either of dominantly membranous or
flexutai nature. Such a repartition stays the same for both theories. Notable differences between total values
of structural intensity exist in the narrow frequency interval following the cut-on frequency of a particular

branch. u it was already remarked for wavenumbers. In the frequency domain where the membranous com-
ponent of the intensity is dominant, two theories give practically the same values. The situation changes
radically for frequencies where the membranous contribuan starts to descend abruptly. Relative differences
of 5(%] appear already at wavelengths which equal triple mean shell radius. For wavelenng which equal
the mean shell radius. F-T values of the structural intensity are almost 50 We] lower tlnn F values.

Two principal conclusions can be established from remarks given above. Firstly. Fltlgge-Trmoshenko theory
cancels the paradox of the purely imaginary branch existing in the high frequency domain. which is valid for
lower order theories. Physically. the consequence is much bcuer description of nearfield effects in the high
frequency domain. Secondly. a domain of validity for lower order theories could be established. If the criterium
of validity is the wavenumber than lower order theories are sufficiently precise for frequencies which do not pass
beyond the limit frequency for which the corresponding wavelength of a particular real branch equals the mean
radius of the cylindrical shell. The criten'um of structural intensity is much moresevere. the limit wavelength
is here the one which equals triple mean radius of the cylindrical shell.
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FIGURES

Figures given bellow are valid for the steel shell of the thickness to mean radius ration of 1/10, All quantities '

represented by these diagrams are resulLs of Flitgge-‘l'tmoshenko theory. Figure 1 represents branches of the

dispersion cttrve for the breathing mode (n = 0) valid [or the empty shell. Five branches figure on the 3D

diagram showing the dependance of the complex wavenumber oi the non-dimensional frequency. Figure 2

represents branches of the dispersion curve for the mode it = ] valid for the shell filled with water. Branches

are presented in the 3D diagram whose axes are as those in figure 1: real and imaginary pan of the wavenumber

and the non-dimensional frequency. Figures 3 and 4 represent membranous and flexutal contribution to the

strucurral intensity in the [arfield [or the shell filled with water. {or the circumferential mode n = 1. Both

contributions are presented in 2D diagram where the horizontal axe represents non-dimensional frequency.
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 Fig. 2; Dispersion curve, steel/water, mode n=l
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Fig. 3. Membmnous contribution, steel/water, mode ":1
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Fig. 4. Natural cantn'butian, steel/water, made n=1
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