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In active structural acoustic control, broadband control of the radiated sound power from a struc-
ture can be achieved by minimizing the amplitudes of the acoustic radiation modes (ARMSs). The
shape of these ARMs is frequency dependent and only a few might radiate significant power in a
given frequency range. In this paper a method is described by which the ARMs are estimated in
real-time from a number of point response measurements taken on a vibrating structure. These
estimates can be used to calculate the radiated power or, here, in a feedforward adaptive control
system. Estimates of the ARM amplitudes in the time domain are produced by digitally filtering
the outputs of an array of sensors mounted on the radiator. These filters are designed by FIR filters
in the frequency domain based on the frequency-dependent ARMs and implemented in the time
domain. These estimates are then used as the cost function in a feedforward, adaptive, filtered-X
LMS controller. The theory is described with reference to a 2-dimensional vibrating structure.
Finally numerical results of real-time simulations are presented.
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1. Introduction

In real-time applications of active structural acoustic control (ASAC), the accuracy of estimating the
radiated sound power of the vibrating structure is vital. The sound power generated by a vibrating
structure can be measured as a superposition of its velocity distributions that radiate power inde-
pendently to the acoustic far-field [1-2]. These velocity distributions are called acoustic radiation
modes (ARMS). Physically, they are basis vectors orthogonal to each other in vector space, and each
basis vector represents a particular velocity pattern. They are functions of position and frequency only
but not boundary conditions, hence are not dependent on the natural modes of the radiating structure.
Theoretically, due to their orthogonality, reducing the radiated sound power from the ARMs with
higher radiation efficiencies can give a significant overall attenuation of the sound power.

The majority of previous work concerns discrete frequency or frequency-domain methods.
However, a problem occurs when the frequency dependent features of ARMs and their radiation ef-
ficiencies are considered in broadband, real-time control applications. Unlike frequency-domain ap-
proaches, estimating ARMs in the time-domain enables a broader frequency range of approximation
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and thus reduces the controller dimensionality in ASAC system [3]. References [3-5] were among
the few studies concerning estimating ARMSs and the radiated sound power in the time-domain. Re-
cently, Nor et al. [6] used time-domain estimates of the ARMs to approximate the radiated sound
power of a baffled beam in a real-time simulation. The study managed to attenuate the radiated sound
power from the first three ARMSs using a feedforward control scheme.

This research extends the work of [6] and focuses on developing adaptive filtered-x least mean
square (FXLMS) controllers to reduce the radiated sound power of a 2-D vibrating structure, e.g. a
baffled clamped plate. The objective of this adaptive control is to minimise the instantaneous mean
square ARM amplitudes, often the first few orders, hence cancelling the radiated sound power con-
tributed by these ARMs. The theoretical background is described in Section 2. The method of esti-
mating ARMs in the time-domain is presented in Section 3. Section 4 discusses the development of
an adaptive controller using the FXLMS algorithm. Then, results of real-time simulations are pre-
sented in Section 5. Finally, Section 6 concludes this paper.

2. Theory

2.1 Acoustic radiation modes and radiated sound power

Consider a vibrating structure radiating sound into a surrounding acoustic field. If the surface of
the structure is discretised into N elements, each considered to radiate in a piston-like manner, the
radiated acoustic power is given by [1-2]

R
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wherey = {y; ... ... yr}T = QTv is the vector of ARM amplitudes, Q is the N x R matrix of ARMs,
N and R are the total number of radiating elements and ARMs, respectively, v is the velocity vector
and A= {4, ..... A, 3T is the vector of the eigenvalues of the radiation resistance matrix. The ARM
amplitudes are functions of position and frequency only but not boundary conditions, hence are not
dependent on the natural modes of the radiating structure. A detailed mathematical derivation can be
found in [1].

Assuming the radiator is discretised into N elements of equal area, the radiation efficiency of the
individual ARM is given by [7]

O, :2N/1r/(pocoA)’ )

where po is the air density, co is the sound velocity in the fluid, and A is the total surface area of the
radiator.

2.2 Radiating structure

In this paper, a rectangular plate clamped at all edges is selected as the radiating structure. The
plate lies in the region 0 <x <Ly and 0 <y <Ly and is subjected to a primary harmonic point force of
amplitude Fp applied at (o, yo). The surface velocity at the n' location (Xn, yn) is [7]

(y.@)=F ZZ o (1170 =) " 230 (56, 30) 230 (0.9, (3)

where  is the angular frequency, p and q are the mode number in x- and y-directions, respectively,
and 77pq is the plate’s modal loss factor. The mode shapes ¢, (x, y) can be well approximated by the
product of two independent beam functions ¢,,(x,y) = ¢, (x)$,(y). For a clamped plate, ¢, (y)
and ¢, (x) are defined as [8]

85 (x) = cosh(apx /Ly ) —cos(a,x/L, )= B sinh(arpx/Ly ) —sin(ea,x/L, )|
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#4(y) =cosh(aqy/Ly)—cos(aqy/Ly) - Ay [Sinh(aq y/Ly)_Sin(aqy/Ly)J ’ (4)
while the (p, @)™ natural frequency wpq Of the plate is given by
@pq =D/m, J(11, + 2150, + 151g)/(1,16) (5)
where ms and D are the mass per unit area and bending stiffness of the plate, respectively, and
b=[ "6, (008, (x)ox, = [ () o, = [ 8 (96, (008
L= [ 8 (D o= [ (1), (9)ay =[G e @)

2.3 Numerical examples

Figure 1 shows the first two ARM shapes of the rectangular plate (Ly / Lx= 0.75) when the plate is
excited at dimensionless frequency kl of 0.1, 1, 5 and 10 where |= L. In this figure, the first ARM is
nearly uniform over the surface of the panel at low frequencies, i.e. kI <1, whereas it is distorted
towards a dome-shape at higher frequencies. The following modes are rocking-type dipole-like modes
oriented along the two axes of the panel at low frequencies and become distorted as the frequency

increases.

The radiation efficiency of the first five ARMs of the plate is shown in Fig. 2. From this figure,
the lower ARM s are seen to be more efficient radiators at low frequencies; in other words, they con-
tribute more to the radiated sound power than the higher ARMs. Thus, controlling those lower ARMs

is most important to reduce the radiated sound power at low frequencies.

kl=0.1
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Figure 1: (a) First and (b) second ARMs of a rectangular plate structure when the dimensionless fre-
guency issetto kl = 0.1, 1, 5 and 10, respectively.
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Figure 2: Radiation efficiencies of individual ARMs
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3. Acoustic radiation mode filters

The ARMs are frequency-dependent, thus the ARM amplitude can be written in the frequency
domain as

y(@)=Q(e) v(w). 0
Suppose Ns structural sensors are used to estimate the radiation modes, hence Eq. (7) becomes

Yl(a)) _Q1,1(w) Ql,n(w) Ql,Ns(w)__Vl(w)_
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where Vn(w) is the velocity of the n™ sensor and Qrn(w) is the value of the r'® ARM at the n' sensor
location. In real-time, the ARM amplitude, yr (t) is given by [6]

Y (1) =0, (1) *v, (1), ©)

where grn(t) and va(t) are the inverse Fourier transforms of Qrn(w) and Va(w), respectively, and *
denotes a convolution. This implies the ARM amplitude can be calculated by applying a filter whose
impulse response is grn(t) to the sensor velocities. In digital applications, the ARMSs can be estimated
at discrete times r=mz with a sampling frequency of fs=1/z, hence Eq. (9) becomes

b (m)= 3] 3 (5w (). @0

where yr(m) is the r'" ARM amplitude at time sample m and qr.n(s) is the value of grn(t) sampled at
the sampling frequency fs. Due to finite approximation using a FIR filter, the infinite sum is truncated.
Given that Qrn(w) always has zero phase, the best approximation will have qr.n = gr-n, but this implies
the FIR filter will be non-causal. However, for real time implementation, the filter must be causal,
i.e. grn(s) = 0 for all s < 0, which leads to the approximated ARM amplitude estimate

Ny S
y,(m)z;{gqm(s)vk(m—s)}- (11)

The causal FIR filter in Eq. (11) will never be better than a non-causal filter that uses future values
of v, i.e. for s < 0, because causality adds a constraint to the approximation. To make a non-causal
yet practically realisable filter for real-time implementation, a causal version of the filter is introduced
by delaying the non-causal filter by d samples [9]. This new filter will approximate a frequency re-
sponse Qrn(w)exp(-iwd/fs) and will produce an approximation of yr(m) at time sample m+d and at the
same time uses (2d +1) coefficients for the optimal estimation of Qrn(w) in the least square sense, i.e.

N, 2d
yr(m)zZ{Zoqr,n(S)vk(m—s—d)}- (12)
n=1 { s=
For certain applications, such as in estimating the radiated sound power or using the ARM ampli-
tude as an error function in adaptation schemes, allowing d samples delay to derive an ARM estimate
will not be critical.
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4. Adaptive feedforward active structural acoustic control

In this paper, adaptive, feedforward, active structural acoustic control is employed to reduce the
sound power radiated by the vibrating rectangular plate. This is realized by j secondary control forces,
Fs applied to the structure.

4.1 ARM amplitude as cost function

The lower order ARMs are more efficient in radiating sound and hence contribute more to the
radiated sound power. Thus, reducing the first ] ARM amplitudes using j control forces can give
significant attenuation [7]. Ideally all first j ARM amplitudes should be zero, so that Eq. (7) gives

Ye :QCTVZOv (13)

where Q. = {Q; ... .. Qj}: and y. = {y; .. .. yj}: refer to the controlled ARMs and ARM ampli-

tudes, respectively. Furthermore, the velocity can be divided into parts caused by the primary and
secondary forces, vpand vs, respectively, as

V:VP+ZVs,j:hPFp+Hsfs, (14)
J

where h, = {H, ...... HN}g is the vector of sensor transfer functions due to the primary force E,,

f, = {F1 ...... F]}: is the vector of the secondary forces, and Hg = {h; ... ... h,}7 is the matrix of the

sensor transfer functions due to the secondary forces. Substituting Eq. (14) into Eq. (13) and rear-
ranging, the sound power radiated by the j" ARM can be cancelled by reducing the j ARM amplitudes
to zero, i.e.

y.= QCTHpr+QcTHst =0, (15)
The cost function will be defined in the form
J ZYCTyc : (16)

4.2 Adaptive controller

The strategy to control the radiated sound power proposed here is realised by the application of
feedforward adaptive control based on the filtered-X LMS algorithm. Here, two FIR filters are re-
quired. The first filter is the controller filter, used to cancel the ARM amplitude of the primary path,
Gp, j, from the input signal u(m) to the error signal e(m). In this paper, the error signal is also the ARM
amplitude y(m). The second filter is the estimator of the secondary path Gs, j, from the controller
output to the error signal. This requires pre-filtering the reference signal in order to make the meas-
ured error signal and the filtered reference signal aligned in time to compensate for the dynamics of
the secondary path.

The updated weights of the first FIR filter are calculated from [10]

W(m+1):W(m)+2-yoe(m)ou(m), (17)

where [ is the adaptation parameter which determines the speed and stability of adaptation. To control
J ARM amplitudes, j sets of independent adaptive controllers are needed, as illustrated in Fig. 3.
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Figure 3: Block diagram representation of the adaptive feedforward ASAC using FXLMS algorithm

5. Numerical simulations

Real-time simulations were performed using Matlab® and Simulink®. A baffled rectangular steel
plate of size 400 mm x 300 mm x 2 mm, clamped at all edges, is used as a reference model. Other
simulation parameters are given in Table 1. For these parameters, there are 12 vibration modes and 8
acoustic radiation modes with efficiency more than 0.1 in the frequency range 0.1f, to 0.9f.

Table 1: Parameters used in the simulations

Parameter Value Parameter Value
Sampling frequency fs 2 kHz Poisson’s ratio v 0.3
Nyquist frequency f, = fJ/2 1 kHz Density of air, po 1.239 kg m*®
Loss factor # 0.01 Speed of sound in air, ¢o 340 mst
Density of plate p 7800 kg m3 Order of the controller filter 40
Young Modulus of plate E 200 GPa Order of the estimator filter 40

5.1 Estimation of acoustic radiation modes and radiated sound power

The causal delayed version of the non-causal filters discussed in Section 3 are constructed in time
domain using 23" order FIR filters with 11-samples delay. These FIR filters are designed by a least-
squares fit to the ideal frequency responses at 1000 uniformly spaced frequency bins up to the Nyquist
frequency, i.e. 1000 Hz, with uniform weighting. The performance of these filters in estimating the
ARMs at the location (120.0 mm, 182.5 mm) on the plate can be seen in Fig. 4(a)-(b). It is clearly
shown that causal delayed versions of the non-causal FIR filters estimate the magnitudes of the ARMs
better while the phase is linearly approximated, which represents the time delay. It must be noted for
adaptive control, introduction of small filter delays is not important as it will just add delay in the
adaptation which can be included in the FXLMS scheme.

Figure 4(c) shows the radiated sound power when the structure is excited by a random primary
point force, Fp (band-passed filtered using a 5" order elliptical filter with normalised edge frequencies
of 0.1 and 0.9 of Nyquist frequency) acting at (45 mm, 60 mm). Twenty sensors uniformly distributed
on the plate are used to measure the real-time surface velocities. The sensor transfer functions are
represented in time domain using a set of modal filters, each designed by 3™ order IIR filters.

The estimates of the ARM amplitudes are found by filtering the time series of the sensor outputs
with the causal delayed versions of the non-causal ARM filters, before summing them. The radiated
sound power is then estimated by multiplying the squares of the estimates of the ARM amplitudes

6 ICSV24, London, 23-27 July 2017
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with the corresponding eigenvalues. A detailed explanation of radiated sound power estimation can
be found in Section 4 of [6]. The comparison of the radiated sound power given in Fig. 4(c) is made
between the theoretical approach from Eq. (1) and the approach based on the time domain estimation
of ARMs discussed in Section 3. It can be seen that the radiated sound power is estimated well across
the whole frequency band of interest.
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Figure 4: Estimation of (a) the 1 ARM, (b) 2"* ARM and (c) radiated sound power

5.2 Performance of adaptive controllers

Simulations of the adaptive control were run for 500s, with the average responses over a 100s
period from t = 400s being found. The locations of the three secondary forces, Fs1, Fs2 and Fs3 are
(200 mm, 150 mm), (340 mm, 45 mm) and (60 mm, 255 mm), respectively. Here, three cases are
considered, i.e. (i) cancellation of the first ARM (ii) cancellation of the first 2 ARMs, and (iii) can-
cellation of the first 3 ARMs. Step-sizes for the adaptation were set as p1,23 = 0.0001.

Figure 5 shows the results of applying these three control cases. The average reductions of the
radiated sound power achieved from case (i), (ii) and (iii) within the frequency range 0.1f, to 0.5f, are
6.5 dB, 9.0 dB and 9.9 dB, respectively. The reductions of the radiated sound power at the natural
frequencies of the plate are presented in Table 2. It can be seen that substantial attenuation is achieved
at the first natural frequency due to the high radiation efficiency of the first ARM. Moreover, cancel-
lation of more ARMs increases the attenuation and widens the control bandwidth.

Table 2: Reduction of the radiated sound power at the natural frequencies of the plate

Natural frequencies (Hz) 156 262 368 437 466 631 675 689
Case (i) 323 16 01 219 03 01 -03 27
Attenuation (dB) Case (i) 294 33 208 154 20 150 16 51

Case (iii) 322 55 221 143 17 158 05 53

ICSV24, London, 23-27 July 2017 7
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Figure 5: Adaptive control of radiated sound power

6. Concluding Remarks

This paper is an extension of the work presented in [6], whereby the focus is on developing
FXLMS controllers to adaptively control the sound power radiated from a vibrating, rectangular
clamped plate. The ARM estimation approach was applied to this two-dimensional radiator and per-
formed very well in estimating the frequency-dependent ARMs and the radiated sound power.

The proposed FXLMS controllers were able to reduce the 3 targeted ARM amplitudes, hence
reducing the overall radiated sound power over a frequency range including 12 modes of vibration.
The proposed control strategy achieves 32 dB attenuation at the first natural frequency of the plate
and 9.9 dB on average.

It is important to highlight that the performance of the proposed approach might differ in practical
applications due to computation time associated with long filter taps/delays and the large number of
sensors involved. These and other issues are reported elsewhere.
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